567 research outputs found

    Polynomial–exponential equations and Zilber's conjecture

    Get PDF
    Assuming Schanuel's conjecture, we prove that any polynomial–exponential equation in one variable must have a solution that is transcendental over a given finitely generated field. With the help of some recent results in Diophantine geometry, we obtain the result by proving (unconditionally) that certain polynomial–exponential equations have only finitely many rational solutions. This answers affirmatively a question of David Marker, who asked, and proved in the case of algebraic coefficients, whether at least the one variable case of Zilber's strong exponential-algebraic closedness conjecture can be reduced to Schanuel's conjecture

    Elliptic solutions to a generalized BBM equation

    Full text link
    An approach is proposed to obtain some exact explicit solutions in terms of the Weierstrass' elliptic function ℘\wp to a generalized Benjamin-Bona-Mahony (BBM) equation. Conditions for periodic and solitary wave like solutions can be expressed compactly in terms of the invariants of ℘\wp. The approach unifies recently established ad-hoc methods to a certain extent. Evaluation of a balancing principle simplifies the application of this approach.Comment: 11 pages, 2 tables, submitted to Phys. Lett.

    An Analytical Construction of the SRB Measures for Baker-type Maps

    Get PDF
    For a class of dynamical systems, called the axiom-A systems, Sinai, Ruelle and Bowen showed the existence of an invariant measure (SRB measure) weakly attracting the temporal average of any initial distribution that is absolutely continuous with respect to the Lebesgue measure. Recently, the SRB measures were found to be related to the nonequilibrium stationary state distribution functions for thermostated or open systems. Inspite of the importance of these SRB measures, it is difficult to handle them analytically because they are often singular functions. In this article, for three kinds of Baker-type maps, the SRB measures are analytically constructed with the aid of a functional equation, which was proposed by de Rham in order to deal with a class of singular functions. We first briefly review the properties of singular functions including those of de Rham. Then, the Baker-type maps are described, one of which is non-conservative but time reversible, the second has a Cantor-like invariant set, and the third is a model of a simple chemical reaction R↔I↔PR \leftrightarrow I \leftrightarrow P. For the second example, the cases with and without escape are considered. For the last example, we consider the reaction processes in a closed system and in an open system under a flux boundary condition. In all cases, we show that the evolution equation of the distribution functions partially integrated over the unstable direction is very similar to de Rham's functional equation and, employing this analogy, we explicitly construct the SRB measures.Comment: 53 pages, 10 figures, to appear in CHAO

    How to detect a possible correlation from the information of a sub-system in quantum mechanical systems

    Full text link
    A possibility to detect correlations between two quantum mechanical systems only from the information of a subsystem is investigated. For generic cases, we prove that there exist correlations between two quantum systems if the time-derivative of the reduced purity is not zero. Therefore, an experimentalist can conclude non-zero correlations between his/her system and some environment if he/she finds the time-derivative of the reduced purity is not zero. A quantitative estimation of a time-derivative of the reduced purity with respect to correlations is also given. This clarifies the role of correlations in the mechanism of decoherence in open quantum systems.Comment: 7 pages, 1 figur
    • …
    corecore