35 research outputs found

    Pattern of the Divergence of Olfactory Receptor Genes during Tetrapod Evolution

    Get PDF
    The olfactory receptor (OR) multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion

    Evolutionary Patterns and Selective Pressures of Odorant/Pheromone Receptor Gene Families in Teleost Fishes

    Get PDF
    BACKGROUND: Teleost fishes do not have a vomeronasal organ (VNO), and their vomeronasal receptors (V1Rs, V2Rs) are expressed in the main olfactory epithelium (MOE), as are odorant receptors (ORs) and trace amine-associated receptors (TAARs). In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (K(A)/K(S)) in TAARs tended to be higher than those in ORs and V2Rs. CONCLUSIONS/SIGNIFICANCE: Frequent gene gains/losses and high K(A)/K(S) in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors

    GPCR Genes Are Preferentially Retained after Whole Genome Duplication

    Get PDF
    One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8–15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs–threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms

    Extensive Gains and Losses of Olfactory Receptor Genes in Mammalian Evolution

    Get PDF
    Odor perception in mammals is mediated by a large multigene family of olfactory receptor (OR) genes. The number of OR genes varies extensively among different species of mammals, and most species have a substantial number of pseudogenes. To gain some insight into the evolutionary dynamics of mammalian OR genes, we identified the entire set of OR genes in platypuses, opossums, cows, dogs, rats, and macaques and studied the evolutionary change of the genes together with those of humans and mice. We found that platypuses and primates have <400 functional OR genes while the other species have 800–1,200 functional OR genes. We then estimated the numbers of gains and losses of OR genes for each branch of the phylogenetic tree of mammals. This analysis showed that (i) gene expansion occurred in the placental lineage each time after it diverged from monotremes and from marsupials and (ii) hundreds of gains and losses of OR genes have occurred in an order-specific manner, making the gene repertoires highly variable among different orders. It appears that the number of OR genes is determined primarily by the functional requirement for each species, but once the number reaches the required level, it fluctuates by random duplication and deletion of genes. This fluctuation seems to have been aided by the stochastic nature of OR gene expression

    Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Get PDF
    Background:In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey) occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates) genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA) family, whose members are mostly single-exon.Results:Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family.Conclusions:Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution

    Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    Get PDF
    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system

    The Evolution of Mammalian Gene Families

    Get PDF
    Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes) in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic “revolving door” of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives

    Chemical cues and pheromones in the sea lamprey (Petromyzon marinus)

    Get PDF
    Chemical cues and pheromones guide decisions in organisms throughout the animal kingdom. The neurobiology, function, and evolution of olfaction are particularly well described in insects, and resulting concepts have driven novel approaches to pest control. However, aside from several exceptions, the olfactory biology of vertebrates remains poorly understood. One exception is the sea lamprey (Petromyzon marinus), which relies heavily upon olfaction during reproduction. Here, we provide a broad review of the chemical cues and pheromones used by the sea lamprey during reproduction, including overviews of the sea lamprey olfactory system, chemical cues and pheromones, and potential applications to population management. The critical role of olfaction in mediating the sea lamprey life cycle is evident by a well-developed olfactory system. Sea lamprey use chemical cues and pheromones to identify productive spawning habitat, coordinate spawning behaviors, and avoid risk. Manipulation of olfactory biology offers opportunities for management of populations in the Laurentian Great Lakes, where the sea lamprey is a destructive invader. We suggest that the sea lamprey is a broadly useful organism with which to study vertebrate olfaction because of its simple but well-developed olfactory organ, the dominant role of olfaction in guiding behaviors during reproduction, and the direct implications for vertebrate pest management
    corecore