2,356 research outputs found

    Differences between physical and human process simulation in geography: Empirical analysis of two cases

    Get PDF
    National Natural Science Foundation of China 41125005;Chinese Academy of Sciences KACX1-YW-1001Physical geography and human geography are the principal branches of the geographical sciences. Physical process simulation and human process simulation in geography are both quantitative methods used to recover past events and even to forecast events based on precisely determined parameters. There are four differences between physical process simulation and human process simulation in geography, which we summarize with two specific cases, one of which is about a typhoon's development and its precipitation, and the other of which is regarding the evolution of three industrial structures in China. The differences focus on four aspects: the main factors of the research framework; the knowledge background of the systematic analysis framework; the simulation data sources and quantitative method; and the core of the study object and the method of forecast application. As the human-land relationship is the key ideology of the man-land system, the relationship between the physical and human factors is becoming increasingly close at present. Physical process simulation and human process simulation in geography will exhibit crossing and blending in the future to reflect the various geographical phenomena better

    Constructing a robust protein-protein interaction network by integrating multiple public databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) are a critical component for many underlying biological processes. A PPI network can provide insight into the mechanisms of these processes, as well as the relationships among different proteins and toxicants that are potentially involved in the processes. There are many PPI databases publicly available, each with a specific focus. The challenge is how to effectively combine their contents to generate a robust and biologically relevant PPI network.</p> <p>Methods</p> <p>In this study, seven public PPI databases, BioGRID, DIP, HPRD, IntAct, MINT, REACTOME, and SPIKE, were used to explore a powerful approach to combine multiple PPI databases for an integrated PPI network. We developed a novel method called <it>k</it>-votes to create seven different integrated networks by using values of <it>k</it> ranging from 1-7. Functional modules were mined by using SCAN, a Structural Clustering Algorithm for Networks. Overall module qualities were evaluated for each integrated network using the following statistical and biological measures: (1) modularity, (2) similarity-based modularity, (3) clustering score, and (4) enrichment.</p> <p>Results</p> <p>Each integrated human PPI network was constructed based on the number of votes (<it>k</it>) for a particular interaction from the committee of the original seven PPI databases. The performance of functional modules obtained by SCAN from each integrated network was evaluated. The optimal value for <it>k</it> was determined by the functional module analysis. Our results demonstrate that the <it>k</it>-votes method outperforms the traditional union approach in terms of both statistical significance and biological meaning. The best network is achieved at <it>k</it>=2, which is composed of interactions that are confirmed in at least two PPI databases. In contrast, the traditional union approach yields an integrated network that consists of all interactions of seven PPI databases, which might be subject to high false positives.</p> <p>Conclusions</p> <p>We determined that the k-votes method for constructing a robust PPI network by integrating multiple public databases outperforms previously reported approaches and that a value of k=2 provides the best results. The developed strategies for combining databases show promise in the advancement of network construction and modeling.</p

    Three-dimensional heterostructure of metallic nanoparticles and carbon nanotubes as potential nanofiller

    Get PDF
    The effect of the dimensionality of metallic nanoparticle-and carbon nanotube-based fillers on the mechanical properties of an acrylonitrile butadiene styrene (ABS) polymer matrix was examined. ABS composite films, reinforced with low dimensional metallic nanoparticles (MNPs, 0-D) and carbon nanotubes (CNTs, 1-D) as nanofillers, were fabricated by a combination of wet phase inversion and hot pressing. The tensile strength and elongation of the ABS composite were increased by 39% and 6%, respectively, by adding a mixture of MNPs and CNTs with a total concentration of 2 wt%. However, the tensile strength and elongation of the ABS composite were found to be significantly increased by 62% and 55%, respectively, upon addition of 3-D heterostructures with a total concentration of 2 wt%. The 3-D heterostructures were composed of multiple CNTs grown radially on the surface of MNP cores, resembling a sea urchin. The mechanical properties of the ABS/3-D heterostructured nanofiller composite films were much improved compared to those of an ABS/mixture of 0-D and 1-D nanofillers composite films at various filler concentrations. This suggests that the 3-D heterostructure of the MNPs and CNTs plays a key role as a strong reinforcing agent in supporting the polymer matrix and simultaneously serves as a discrete force-transfer medium to transfer the loaded tension throughout the polymer matrix

    Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.

    Get PDF
    BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721

    Bonobo personality traits are heritable and associated with vasopressin receptor gene 1a variation

    Get PDF
    Despite being closely related, bonobos and chimpanzees show remarkable behavioral differences, the proximate origins of which remain unknown. This study examined the link between behavioral variation and variation in the vasopressin 1a receptor gene (Avpr1a) in bonobos. Chimpanzees are polymorphic for a ~360 bp deletion (DupB), which includes a microsatellite (RS3) in the 5β€² promoter region of Avpr1a. In chimpanzees, the DupB deletion has been linked to lower sociability, lower social sensitivity, and higher anxiety. Chimpanzees and bonobos differ on these traits, leading some to believe that the absence of the DupB deletion in bonobos may be partly responsible for these differences, and to the prediction that similar associations between Avpr1a genotypes and personality traits should be present in bonobos. We identified bonobo personality dimensions using behavioral measures (Sociability(B), Boldness(B), Openness(B), Activity(B)) and trait ratings (Assertiveness(R), Conscientiousness(R), Openness(R), Agreeableness(R), Attentiveness(R), Extraversion(R)). In the present study we found that all 10 dimensions have nonzero heritabilities, indicating there is a genetic basis to personality, and that bonobos homozygous for shorter RS3 alleles were lower in Attentiveness(R) and higher in Openness(B). These results suggest that variations in Avpr1a genotypes explain both within and between species differences in personality traits of bonobos and chimpanzees

    Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201

    Full text link
    In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (Tc), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-Tc cuprate superconductors above Tc, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.Comment: Nature Physics advance online publication, 04/04/2010 (doi:10.1038/nphys1632) Author's version of the paper

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
    • …
    corecore