199 research outputs found

    Karyotypic polymorphism of the zebra finch Z chromosome

    Get PDF
    We describe a karyotypic polymorphism on the zebra finch Z chromosome. This polymorphism was discovered because of a difference in the position of the centromere and because it occurs at varying frequencies in domesticated colonies in the USA and Germany and among two zebra finch subspecies. Using DNA fluorescent in situ hybridization to map specific Z genes and measurements of DNA replication, we show that this polymorphism is the result of a large pericentric inversion involving the majority of the chromosome. We sequenced a likely breakpoint for the inversion and found many repetitive sequences. Around the breakpoint, there are numerous repetitive sequences and several copies of PAK3 (p21-activated kinase 3)-related sequences (PAK3Z) which showed testes-specific expression by RT-PCR. Our findings further suggest that the sequenced genome of the zebra finch may be derived from a male heterozygote for the Z chromosome polymorphism. This finding, in combination with regional differences in the frequency of the polymorphism, has important consequences for future studies using zebra finches

    The Status of Dosage Compensation in the Multiple X Chromosomes of the Platypus

    Get PDF
    Dosage compensation has been thought to be a ubiquitous property of sex chromosomes that are represented differently in males and females. The expression of most X-borne genes is equalized between XX females and XY males in therian mammals (marsupials and “placentals”) by inactivating one X chromosome in female somatic cells. However, compensation seems not to be strictly required to equalize the expression of most Z-borne genes between ZZ male and ZW female birds. Whether dosage compensation operates in the third mammal lineage, the egg-laying monotremes, is of considerable interest, since the platypus has a complex sex chromosome system in which five X and five Y chromosomes share considerable genetic homology with the chicken ZW sex chromosome pair, but not with therian XY chromosomes. The assignment of genes to four platypus X chromosomes allowed us to examine X dosage compensation in this unique species. Quantitative PCR showed a range of compensation, but SNP analysis of several X-borne genes showed that both alleles are transcribed in a heterozygous female. Transcription of 14 BACs representing 19 X-borne genes was examined by RNA-FISH in female and male fibroblasts. An autosomal control gene was expressed from both alleles in nearly all nuclei, and four pseudoautosomal BACs were usually expressed from both alleles in male as well as female nuclei, showing that their Y loci are active. However, nine X-specific BACs were usually transcribed from only one allele. This suggests that while some genes on the platypus X are not dosage compensated, other genes do show some form of compensation via stochastic transcriptional inhibition, perhaps representing an ancestral system that evolved to be more tightly controlled in placental mammals such as human and mouse

    ZNF280BY and ZNF280AY: autosome derived Y-chromosome gene families in Bovidae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent progress in exploring the Y-chromosome gene content in humans, mice and cats have suggested that "autosome-to-Y" transposition of the male fertility genes is a recurrent theme during the mammalian Y-chromosome evolution. These transpositions are lineage-dependent. The purpose of this study is to investigate the lineage-specific Y-chromosome genes in bovid.</p> <p>Results</p> <p>We took a direct testis cDNA selection strategy and discovered two novel gene families, <it>ZNF280BY </it>and <it>ZNF280AY</it>, on the bovine (<it>Bos taurus</it>) Y-chromosome (BTAY), which originated from the transposition of a gene block on the bovine chromosome 17 (BTA17) and subsequently amplified. Approximately 130 active <it>ZNF280BY </it>loci (and ~240 pseudogenes) and ~130 pseudogenized <it>ZNF280AY </it>copies are present over the majority of the male-specific region (MSY). Phylogenetic analysis indicated that both gene families fit with the "birth-and-death" model of evolution. The active <it>ZNF280BY </it>loci share high sequence similarity and comprise three major genomic structures, resulted from insertions/deletions (indels). Assembly of a 1.2 Mb BTAY sequence in the MSY ampliconic region demonstrated that <it>ZNF280BY </it>and <it>ZNF280AY</it>, together with <it>HSFY </it>and <it>TSPY </it>families, constitute the major elements within the repeat units. The <it>ZNF280BY </it>gene family was found to express in different developmental stages of testis with sense RNA detected in all cell types of the seminiferous tubules while the antisense RNA detected only in the spermatids. Deep sequencing of the selected cDNAs revealed that different loci of <it>ZNF280BY </it>were differentially expressed up to 60-fold. Interestingly, different copies of the <it>ZNF280AY </it>pseudogenes were also found to differentially express up to 10-fold. However, expression level of the <it>ZNF280AY </it>pseudogenes was almost 6-fold lower than that of the <it>ZNF280BY </it>genes. <it>ZNF280BY </it>and <it>ZNF280AY </it>gene families are present in bovid, but absent in other mammalian lineages.</p> <p>Conclusions</p> <p><it>ZNF280BY </it>and <it>ZNF280AY </it>are lineage-specific, multi-copy Y-gene families specific to <it>Bovidae</it>, and are derived from the transposition of an autosomal gene block. The temporal and spatial expression patterns of <it>ZNF280BY</it>s in testis suggest a role in spermatogenesis. This study offers insights into the genomic organization of the bovine MSY and gene regulation in spermatogenesis, and provides a model for studying evolution of multi-copy gene families in mammals.</p

    Left Hemisphere Specialization for Oro-Facial Movements of Learned Vocal Signals by Captive Chimpanzees

    Get PDF
    The left hemisphere of the human brain is dominant in the production of speech and signed language. Whether similar lateralization of function for communicative signal production is present in other primates remains a topic of considerable debate. In the current study, we examined whether oro-facial movements associated with the production of learned attention-getting sounds are differentially lateralized compared to facial expressions associated with the production of species-typical emotional vocalizations in chimpanzees.Still images captured from digital video were used to quantify oro-facial asymmetries in the production of two attention-getting sounds and two species-typical vocalizations in a sample of captive chimpanzees. Comparisons of mouth asymmetries during production of these sounds revealed significant rightward biased asymmetries for the attention-getting sounds and significant leftward biased asymmetries for the species-typical sounds.These results suggest that the motor control of oro-facial movements associated with the production of learned sounds is lateralized to the left hemisphere in chimpanzees. Furthermore, the findings suggest that the antecedents for lateralization of human speech may have been present in the common ancestor of chimpanzees and humans approximately 5 mya and are not unique to the human lineage

    Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    Get PDF
    Background: Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results: The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion: We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (&gt;315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages.Vidushi S. Patel, Steven J.B. Cooper, Janine E. Deakin, Bob Fulton, Tina Graves, Wesley C. Warren, Richard K. Wilson and Jennifer A.M. Grave

    Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide

    Get PDF
    Perovskite oxide surfaces catalyze oxygen exchange reactions that are crucial for fuel cells, electrolyzers, and thermochemical fuel synthesis. Here, by bridging the gap between surface analysis with atomic resolution and oxygen exchange kinetics measurements, we demonstrate how the exact surface atomic structure can determine the reactivity for oxygen exchange reactions on a model perovskite oxide. Two precisely controlled surface reconstructions with (4 × 1) and (2 × 5) symmetry on 0.5 wt.% Nb-doped SrTiO3(110) were subjected to isotopically labeled oxygen exchange at 450 °C. The oxygen incorporation rate is three times higher on the (4 × 1) surface phase compared to the (2 × 5). Common models of surface reactivity based on the availability of oxygen vacancies or on the ease of electron transfer cannot account for this difference. We propose a structure-driven oxygen exchange mechanism, relying on the flexibility of the surface coordination polyhedra that transform upon dissociation of oxygen molecules.Austrian Science Fund (SFB “ Functional Oxide Surfaces and Interfaces ” - FOXSI, Project F 45)European Research Council Advanced Grant (“OxideSurfaces” (Project ERC-2011-ADG_20110209))National Science Foundation (U.S.). Division of Materials Research (CAREER Award Grant No. 1055583

    Solonamide B Inhibits Quorum Sensing and Reduces Staphylococcus aureus Mediated Killing of Human Neutrophils

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a serious human pathogen, and particularly the spread of community associated (CA)-MRSA strains such as USA300 is a concern, as these strains can cause severe infections in otherwise healthy adults. Recently, we reported that a cyclodepsipeptide termed Solonamide B isolated from the marine bacterium, Photobacterium halotolerans strongly reduces expression of RNAIII, the effector molecule of the agr quorum sensing system. Here we show that Solonamide B interferes with the binding of S. aureus autoinducing peptides (AIPs) to sensor histidine kinase, AgrC, of the agr two-component system. The hypervirulence of USA300 has been linked to increased expression of central virulence factors like α-hemolysin and the phenol soluble modulins (PSMs). Importantly, in strain USA300 Solonamide B dramatically reduced the activity of α-hemolysin and the transcription of psma encoding PSMs with an 80% reduction in toxicity of supernatants towards human neutrophils and rabbit erythrocytes. To our knowledge this is the first report of a compound produced naturally by a Gram-negative marine bacterium that interferes with agr and affects both RNAIII and AgrA controlled virulence gene expression in S. aureus
    corecore