70 research outputs found

    Photoperiod Regulates Corticosterone Rhythms by Altered Adrenal Sensitivity via Melatonin-Independent Mechanisms in Fischer 344 Rats and C57BL/6J Mice

    Get PDF
    Most species living in temperate zones adapt their physiology and behavior to seasonal changes in the environment by using the photoperiod as a primary cue. The mechanisms underlying photoperiodic regulation of stress-related functions are not well understood. In this study, we analyzed the effects of photoperiod on the hypothalamic-pituitary-adrenal axis in photoperiod-sensitive Fischer 344 rats. We first examined how photoperiod affects diurnal variations in plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone. ACTH levels did not exhibit diurnal variations under long- and short-day conditions. On the other hand, corticosterone levels exhibited a clear rhythm under short-day condition with a peak during dark phase. This peak was not observed under long-day condition in which a significant rhythm was not detected. To analyze the mechanisms responsible for the photoperiodic regulation of corticosterone rhythms, ACTH was intraperitoneally injected at the onset of the light or dark phase in dexamethasone-treated rats maintained under long- and short-day conditions. ACTH induced higher corticosterone levels in rats examined at dark onset under short-day condition than those maintained under long-day condition. Next, we asked whether melatonin signals are involved in photoperiodic regulation of corticosterone rhythms, and rats were intraperitoneally injected with melatonin at late afternoon under long-day condition for 3 weeks. However, melatonin injections did not affect the corticosterone rhythms. In addition, photoperiodic changes in the amplitude of corticosterone rhythms were also observed in melatonin-deficient C57BL/6J mice, in which expression profiles of several clock genes and steroidgenesis genes in adrenal gland were modified by the photoperiod. Our data suggest that photoperiod regulates corticosterone rhythms by altered adrenal sensitivity through melatonin-independent mechanisms that may involve the adrenal clock

    A prospective Swedish study on body size, body composition, diabetes, and prostate cancer risk

    Get PDF
    Obesity may be associated with increased risk of prostate cancer (PCa). According to one hypothesis, obesity could lower the risk of non-aggressive tumours, while simultaneously increasing the risk of aggressive cancer. Furthermore, central adiposity may be independently associated with PCa risk; it is also associated with diabetes, which itself may influence risk of PCa. We studied the associations between height, body composition, and fat distribution, diabetes prevalence and risk of total, aggressive, and non-aggressive PCa in 10 564 initially cancer-free men (aged 45–73 years) of the population-based Malmö Diet and Cancer cohort. Anthropometric and body composition measurements, including bioelectrical impedance for estimation of fat mass, were performed by study nurses. Diabetes prevalence was self-reported. Cancer cases and clinical characteristics were ascertained through national and regional registry data. Dietary and other background data were obtained through a modified diet history method and an extensive questionnaire. During a mean follow-up of 11.0 years, 817 incidental PCa cases were diagnosed. Of these, 281 were classified as aggressive. There were 202 cases occurring before 65 years of age. Height was positively associated with total and non-aggressive PCa risk. Waist–hip ratio (WHR), a measure of central adiposity, was positively associated with PCa before age 65, and less strongly, with total PCa. This association was independent of body mass index (BMI) and other potential confounders. General adiposity, expressed as BMI or body fat percentage, and prevalent diabetes were not associated with PCa risk. In this study, WHR and body height were stronger PCa predictors than general adiposity

    B Vitamins, Methionine and Alcohol Intake and Risk of Colon Cancer in Relation to BRAF Mutation and CpG Island Methylator Phenotype (CIMP)

    Get PDF
    One-carbon metabolism appears to play an important role in DNA methylation reaction. Evidence suggests that a low intake of B vitamins or high alcohol consumption increases colorectal cancer risk. How one-carbon nutrients affect the CpG island methylator phenotype (CIMP) or BRAF mutation status in colon cancer remains uncertain.Utilizing incident colon cancers in a large prospective cohort of women (the Nurses' Health Study), we determined BRAF status (N = 386) and CIMP status (N = 375) by 8 CIMP-specific markers [CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1], and 8 other CpG islands (CHFR, HIC1, IGFBP3, MGMT, MINT-1, MINT-31, p14, and WRN). We examined the relationship between intake of one-carbon nutrients and alcohol and colon cancer risk, by BRAF mutation or CIMP status.Higher folate intake was associated with a trend towards low risk of CIMP-low/0 tumors [total folate intake ≥400 µg/day vs. <200 µg/day; the multivariate relative risk = 0.73; 95% CI = 0.53-1.02], whereas total folate intake had no influence on CIMP-high tumor risks (P(heterogeneity) = 0.73). Neither vitamin B(6), methionine or alcohol intake appeared to differentially influence risks for CIMP-high and CIMP-low/0 tumors. Using the 16-marker CIMP panel did not substantially alter our results. B vitamins, methionine or alcohol intake did not affect colon cancer risk differentially by BRAF status.This molecular pathological epidemiology study suggests that low level intake of folate may be associated with an increased risk of CIMP-low/0 colon tumors, but not that of CIMP-high tumors. However, the difference between CIMP-high and CIMP-low/0 cancer risks was not statistically significant, and additional studies are necessary to confirm these observations

    Behavioral and Endocrine Consequences of Simultaneous Exposure to Two Different Stressors in Rats: Interaction or Independence?

    Get PDF
    Although behavioral and endocrine consequences of acute exposure to stressors have been extensively studied, little is known about how simultaneous exposure to two different stressors interacts to induce short- and long-term effects. In the present experiment we studied this interaction in adult male rats exposed to cat fur odor (impregnated cloth) or immobilization on boards either separately or simultaneously. We reasoned that exposure to the odor of a potential predator while immobilized, may potentiate its negative consequences as compared to exposure to only one of the stressors. Exposure to cat odor elicited the expected reduction of activity and avoidance of the area where the impregnated cloth was located. The endocrine response (plasma levels of ACTH and corticosterone, as a measure of the hypothalamic-pituitary-adrenal axis, HPA) was markedly greater after immobilization than after cat fur odor and no additive effects were found by simultaneous exposure to both stressors. Cat odor, but not immobilization, increased anxiety-like behavior as evaluated in the elevated plus-maze 7 days after the stressors, with no evidence of enhanced HPA activation. In addition, cat odor exposure resulted in long-lasting (8 days later) fear conditioning to the box containing a clean cloth, which was reflected by hypoactivity, avoidance of the cloth area and enhanced HPA activation. All these effects were similarly observed in rats exposed simultaneously to cat odor and immobilization. In rats only exposed to immobilization, only some weak behavioral signs of fear conditioning were found, but HPA activation in response to the context paired to immobilization was enhanced to the same extent as in cat odor-exposed animals, supporting a certain degree of endocrine conditioning. The present results did not reveal important behavioral interactions between the two stressors when animals experienced both simultaneously, whereas some interactions were found regarding HPA activation. Theoretical implications are discussed

    Tobacco and the risk of acute leukaemia in adults

    Get PDF
    Self-reported smoking histories were collected during face-to-face interviews with 807 patients with acute leukaemia and 1593 age- and sex-matched controls. Individuals who had smoked regularly at some time during their lives were more likely to develop acute leukaemia than those who had never smoked (odds ratio (OR) = 1.2, 95% confidence interval (CI) 1.0–1.4). The association was strongest for current smokers, defined here as smoking 2 years before diagnosis (OR = 1.4, 95% CI 1.1–1.7). With respect to the numbers of years smoked, risk estimates were raised in all groups except those who had smoked for fewer than 10 years. Similarly, the odds ratio decreased as the number of years ‘stopped smoking’ increased, falling to one amongst those who had given up smoking for more than 10 years. No significant linear trends were found, however, with either the numbers of years smoked or the numbers of years stopped smoking, and no significant differences were found between AML and ALL. © 1999 Cancer Research Campaig

    Dendritic Morphology of Hippocampal and Amygdalar Neurons in Adolescent Mice Is Resilient to Genetic Differences in Stress Reactivity

    Get PDF
    Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated with structural plasticity in Golgi-stained neurons. Earlier, it was shown that the highly stress reactive (HR) compared to the intermediate (IR) and low (LR) stress reactive mice line presents a phenotype, with respect to neuroendocrine parameters, sleep architecture, emotional behavior and cognition, that recapitulates some of the features observed in patients suffering from major depression. In late adolescent males of the HR, IR, and LR mouse lines, we observed no significant differences in total dendritic length, number of branch points and branch tips, summated tip order, number of primary dendrites or dendritic complexity of either CA3 pyramidal neurons (apical as well as basal dendrites) or principal neurons in the basolateral amygdala. Apical dendrites of CA1 pyramidal neurons were also unaffected by the differences in stress reactivity of the animals; marginally higher length and complexity of the basal dendrites were found in LR compared to IR but not HR mice. In the same CA1 pyramidal neurons, spine density of distal apical tertiary dendrites was significantly higher in LR compared to IR or HR animals. We tentatively conclude that the dendritic complexity of principal hippocampal and amygdala neurons is remarkably stable in the light of a genetic predisposition to high versus low stress reactivity, while spine density seems more plastic. The latter possibly contributes to the behavioral phenotype of LR versus HR animals

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    TSPO ligand residence time influences human glioblastoma multiforme cell death/life balance

    Get PDF
    Abstract Ligands addressed to the mitochondrial Translocator Protein (TSPO) have been suggested as cell death/life and steroidogenesis modulators. Thus, TSPO ligands have been proposed as drug candidates in several diseases; nevertheless, a correlation between their binding affinity and in vitro efficacy has not been demonstrated yet, questioning the specificity of the observed effects. Since drug-target residence time is an emerging parameter able to influence drug pharmacological features, herein, the interaction between TSPO and irDE-MPIGA, a covalent TSPO ligand, was investigated in order to explore TSPO control on death/life processes in a standardized glioblastoma cell setting. After 90 min irDE-MPIGA cell treatment, 25 nM ligand concentration saturated irreversibly all TSPO binding sites; after 24 h, TSPO de-novo synthesis occurred and about 40 % TSPO binding sites resulted covalently bound to irDE-MPIGA. During cell culture treatments, several dynamic events were observed: (a) early apoptotic markers appeared, such as mitochondrial membrane potential collapse (at 3 h) and externalization of phosphatidylserine (at 6 h); (b) cell viability was reduced (at 6 h), without cell cycle arrest. After digitonin-permeabilized cell suspension treatment, a modulation of mitochondrial permeability transition pore was evidenced. Similar effects were elicited by the reversible TSPO ligand PIGA only when applied at micromolar dose. Interestingly, after 6 h, irDE-MPIGA cell exposure restored cell survival parameters. These results highlighted the ligand-target residence time and the cellular setting are crucial parameters that should be taken into account to understand the drug binding affinity and efficacy correlation and, above all, to translate efficiently cellular drug responses from bench to bedside
    • …
    corecore