35 research outputs found

    Specialising Software for Different Downstream Applications Using Genetic Improvement and Code Transplantation

    Get PDF
    OAPA Genetic improvement uses computational search to improve existing software while retaining its partial functionality. Genetic improvement has previously been concerned with improving a system with respect to all possible usage scenarios. In this paper, we show how genetic improvement can also be used to achieve specialisation to a specific set of usage scenarios. We use genetic improvement to evolve faster versions of a C++ program, a Boolean satisfiability solver called MiniSAT, specialising it for three applications. Our specialised solvers achieve between 4% and 36% execution time improvement, which is commensurate with efficiency gains achievable using human expert optimisation for the general solver. We also use genetic improvement to evolve faster versions of an image processing tool called ImageMagick, utilising code from GraphicsMagick, another image processing tool which was forked from it. We specialise the format conversion functionality to black & amp; white images and colour images only. Our specialised versions achieve up to 3% execution time improvement

    Exploring Fitness and Edit Distance of Mutated Python Programs

    Get PDF
    Genetic Improvement (GI) is the process of using computational search techniques to improve existing software e.g. in terms of execution time, power consumption or correctness. As in most heuristic search algorithms, the search is guided by fitness with GI searching the space of program variants of the original software. The relationship between the program space and fitness is seldom simple and often quite difficult to analyse. This paper makes a preliminary analysis of GI’s fitness distance measure on program repair with three small Python programs. Each program undergoes incremental mutations while the change in fitness as measured by proportion of tests passed is monitored. We conclude that the fitnesses of these programs often does not change with single mutations and we also confirm the inherent discreteness of bug fixing fitness functions. Although our findings cannot be assumed to be general for other software they provide us with interesting directions for further investigation

    Genetic Improvement @ ICSE 2020

    Get PDF
    Following Prof. Mark Harman of Facebook's keynote and formal presentations (which are recorded in the proceedings) there was a wide ranging discussion at the eighth international Genetic Improvement workshop, GI-2020 @ ICSE (held as part of the 42nd ACM/IEEE International Conference on Software Engineering on Friday 3rd July 2020). Topics included industry take up, human factors, explainabiloity (explainability, justifyability, exploitability) and GI benchmarks. We also contrast various recent online approaches (e.g. SBST 2020) to holding virtual computer science conferences and workshops via the WWW on the Internet without face-2-face interaction. Finally we speculate on how the Coronavirus Covid-19 Pandemic will affect research next year and into the future

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Perspectives on the use of transcriptomics to advance biofuels

    Get PDF
    As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.clos

    The Problem of Theoretical Pluralism in Psychology

    No full text
    corecore