1,630 research outputs found

    Practice Makes Imperfect: Restorative Effects of Sleep on Motor Learning

    Get PDF
    Emerging evidence suggests that sleep plays a key role in procedural learning, particularly in the continued development of motor skill learning following initial acquisition. We argue that a detailed examination of the time course of performance across sleep on the finger-tapping task, established as the paradigm for studying the effect of sleep on motor learning, will help distinguish a restorative role of sleep in motor skill learning from a proactive one. Healthy subjects rehearsed for 12 trials and, following a night of sleep, were tested. Early training rapidly improved speed as well as accuracy on pre-sleep training. Additional rehearsal caused a marked slow-down in further improvement or partial reversal in performance to observed levels below theoretical upper limits derived on the basis of early pre-sleep rehearsal. This decrement in learning efficacy does not occur always, but if and only if it does, overnight sleep has an effect in fully or partly restoring the efficacy and actual performance to the optimal theoretically achieveable level. Our findings re-interpret the sleep-dependent memory enhancement in motor learning reported in the literature as a restoration of fatigued circuitry specialized for the skill. In providing restitution to the fatigued brain, sleep eliminates the rehearsal-induced synaptic fatigue of the circuitry specialized for the task and restores the benefit of early pre-sleep rehearsal. The present findings lend support to the notion that latent sleep-dependent enhancement of performance is a behavioral expression of the brain's restitution in sleep

    Metabolomic Analysis of Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass Spectrometry

    Get PDF
    Direct-injection mass spectrometry (DIMS) is a means of rapidly obtaining metabolomic phenotype data in both prokaryotes and eukaryotes. Given our generally poor understanding of Campylobacter metabolism, the high-throughput and relatively simple sample preparation of DIMS has made this an attractive technique for metabolism-related studies and hypothesis generation, especially when attempting to analyze metabolic mutants with no clear phenotype. Here we describe a metabolomic fingerprinting approach with sampling and extraction methodologies optimized for direct-injection electrospray ionization mass spectrometry (ESI-MS), which we have used as a means of comparing wild-type and isogenic mutant strains of C. jejuni with various metabolic blocks

    Metabolomic Analysis of Campylobacter jejuni by Direct-Injection Electrospray Ionization Mass Spectrometry

    Get PDF
    Direct-injection mass spectrometry (DIMS) is a means of rapidly obtaining metabolomic phenotype data in both prokaryotes and eukaryotes. Given our generally poor understanding of Campylobacter metabolism, the high-throughput and relatively simple sample preparation of DIMS has made this an attractive technique for metabolism-related studies and hypothesis generation, especially when attempting to analyze metabolic mutants with no clear phenotype. Here we describe a metabolomic fingerprinting approach with sampling and extraction methodologies optimized for direct-injection electrospray ionization mass spectrometry (ESI-MS), which we have used as a means of comparing wild-type and isogenic mutant strains of C. jejuni with various metabolic blocks

    Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption.

    Get PDF
    BACKGROUND: Diet is a major contributor to metabolic disease risk, but there is controversy as to whether increased incidences of diseases such as non-alcoholic fatty liver disease arise from consumption of saturated fats or free sugars. Here, we investigate whether a sub-set of triacylglycerols (TAGs) were associated with hepatic steatosis and whether they arise from de novo lipogenesis (DNL) from the consumption of carbohydrates. RESULTS: We conduct direct infusion mass spectrometry of lipids in plasma to study the association between specific TAGs and hepatic steatosis assessed by ultrasound and fatty liver index in volunteers from the UK-based Fenland Study and evaluate clustering of TAGs in the National Survey of Health and Development UK cohort. We find that TAGs containing saturated and monounsaturated fatty acids with 16-18 carbons are specifically associated with hepatic steatosis. These TAGs are additionally associated with higher consumption of carbohydrate and saturated fat, hepatic steatosis, and variations in the gene for protein phosphatase 1, regulatory subunit 3b (PPP1R3B), which in part regulates glycogen synthesis. DNL is measured in hyperphagic ob/ob mice, mice on a western diet (high in fat and free sugar) and in healthy humans using stable isotope techniques following high carbohydrate meals, demonstrating the rate of DNL correlates with increased synthesis of this cluster of TAGs. Furthermore, these TAGs are increased in plasma from patients with biopsy-confirmed steatosis. CONCLUSION: A subset of TAGs is associated with hepatic steatosis, even when correcting for common confounding factors. We suggest that hepatic steatosis risk in western populations is in part driven by increased DNL following carbohydrate rich meals in addition to the consumption of saturated fat

    Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs

    Get PDF
    We discuss the impact of Population II and Globular Cluster (GCs) stars on the derivation of the age of the Universe, and on the study of the formation and early evolution of galaxies, our own in particular. The long-standing problem of the actual distance scale to Population II stars and GCs is addressed, and a variety of different methods commonly used to derive distances to Population II stars are briefly reviewed. Emphasis is given to the discussion of distances and ages for GCs derived using Hipparcos parallaxes of local subdwarfs. Results obtained by different authors are slightly different, depending on different assumptions about metallicity scale, reddenings, and corrections for undetected binaries. These and other uncertainties present in the method are discussed. Finally, we outline progress expected in the near future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22 pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty LaTeX style file, enclose

    The evolution of extreme cooperation via shared dysphoric experiences

    Get PDF
    Willingness to lay down one’s life for a group of non-kin, well documented historically and ethnographically, represents an evolutionary puzzle. Building on research in social psychology, we develop a mathematical model showing how conditioning cooperation on previous shared experience can allow individually costly pro-group behavior to evolve. The model generates a series of predictions that we then test empirically in a range of special sample populations (including military veterans, college fraternity/sorority members, football fans, martial arts practitioners, and twins). Our empirical results show that sharing painful experiences produces “identity fusion” – a visceral sense of oneness – which in turn can motivate self-sacrifice, including willingness to fight and die for the group. Practically, our account of how shared dysphoric experiences produce identity fusion helps us better understand such pressing social issues as suicide terrorism, holy wars, sectarian violence, gang-related violence, and other forms of intergroup conflict

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error
    corecore