20 research outputs found

    A Novel Mechanism of Transposon-Mediated Gene Activation

    Get PDF
    Transposable Insertion Sequences (IS elements) have been shown to provide various benefits to their hosts via gene activation or inactivation under stress conditions by appropriately inserting into specific chromosomal sites. Activation is usually due to derepression or introduction of a complete or partial promoter located within the element. Here we define a novel mechanism of gene activation by the transposon IS5 in Escherichia coli. The glycerol utilization operon, glpFK, that is silent in the absence of the cAMP-Crp complex, is activated by IS5 when inserted upstream of its promoter. High-level expression is nearly constitutive, only mildly dependent on glycerol, glucose, GlpR, and Crp, and allows growth at a rate similar to or more rapid than that of wild-type cells. Expression is from the glpFK promoter and dependent on (1) the DNA phase, (2) integration host factor (IHF), and (3) a short region at the 3′ end of IS5 harboring a permanent bend and an IHF binding site. The lacZYA operon is also subject to such activation in the absence of Crp. Thus, we have defined a novel mechanism of gene activation involving transposon insertion that may be generally applicable to many organisms

    A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy

    Get PDF
    Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity. Novel pyrimidine–imidazoles (PIs) were identified in a whole-cell screen against Mycobacterium tuberculosis. Lead optimization generated in vitro potent derivatives with desirable pharmacokinetic properties, yet without in vivo efficacy. Mechanism of action studies linked the PI activity to glycerol metabolism, which is not relevant for M. tuberculosis during infection. PIs induced self-poisoning of M. tuberculosis by promoting the accumulation of glycerol phosphate and rapid ATP depletion. This study underlines the importance of understanding central bacterial metabolism in vivo and of developing predictive in vitro culture conditions as a prerequisite for the rational discovery of new antibiotics

    Help-Seeking Barriers Among Sexual and Gender Minority Individuals Who Experience Intimate Partner Violence Victimization

    Get PDF
    Sexual and gender minority (SGM) individuals experience intimate partner violence (IPV) victimization at disproportionate rates compared to cisgender and heterosexual individuals. Given the widespread consequences of experiencing IPV victimization, intervention and prevention strategies should identify readily accessible and culturally competent services for this population. SGM individuals who experience IPV victimization face unique individual-, interpersonal-, and systemic-level barriers to accessing informal and formal support services needed to recover from IPV. This chapter reviews IPV victimization prevalence rates among SGM individuals in the context of minority stress and highlights unique forms of IPV victimization affecting this population, namely identity abuse. The literature on help-seeking processes among IPV survivors in general and help-seeking patterns and barriers specifically among SGM individuals who experience IPV victimization in the context of minority stress (e.g., discrimination, internalized stigma, rejection sensitivity, identity concealment) are discussed. How minority stressors at individual, interpersonal, and structural levels act as barriers to help-seeking among SGM individuals experiencing IPV victimization is presented. The chapter concludes with a review of emerging evidence for interventions aimed at reducing help-seeking barriers among SGM individuals who face IPV victimization and a discussion of future directions for research on help-seeking barriers in this population

    Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates

    No full text
    The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance

    Protein interaction patterns in different cellular environments are revealed by in-cell NMR

    Get PDF
    In-cell NMR allows obtaining atomic-level information on biological macromolecules in their physiological environment. Soluble proteins may interact with the cellular environment in different ways: either specifically, with their functional partners, or non-specifically, with other cellular components. Such behaviour often causes the disappearance of the NMR signals. Here we show that by introducing mutations on the human protein profilin 1, used here as a test case, the in-cell NMR signals can be recovered. In human cells both specific and non-specific interactions are present, while in bacterial cells only the effect of non-specific interactions is observed. By comparing the NMR signal recovery pattern in human and bacterial cells, the relative contribution of each type of interaction can be assessed. This strategy allows detecting solution in-cell NMR spectra of soluble proteins without altering their fold, thus extending the applicability of in-cell NMR to a wider range of proteins
    corecore