33 research outputs found

    Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microbial fuel cells (MFCs) are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood.</p> <p>Results</p> <p>A laboratory-scale two-chamber microbial fuel cell (MFC) was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate) became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with <it>Clostridiales</it>, <it>Chloroflexi</it>, <it>Rhizobiales </it>and <it>Methanobacterium</it>. Fluorescence in-situ hybridization revealed that the <it>Rhizobiales </it>population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population.</p> <p>Conclusion</p> <p>Bacteria affiliated with the <it>Rhizobiales </it>constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.</p

    Vilinska ljubav i licemjerje svijeta. Jean Giraudoux, Ondine, 56. dubrovačke ljetne igre

    Get PDF
    <p><b>Copyright information:</b></p><p>Taken from "Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell"</p><p>http://www.biomedcentral.com/1471-2180/8/6</p><p>BMC Microbiology 2008;8():6-6.</p><p>Published online 10 Jan 2008</p><p>PMCID:PMC2254626.</p><p></p>he anode chamber (mM); closed diamond, propionate in the anode chamber (mM); open triangle, methane in the anode chamber. Methane concentration was expressed as 'mM equivalent (eq.)' by supposing that all methane was present in the aqueous phase. Broken lines represent times when the anode electrode was transferred to new anode chambers, solid stars indicate times when cellulose (6 g l) was added to the anode chambers, while arrows indicate times when pH in the anode chamber was adjusted to 7.0. The arrowhead indicates the time when the cathode chamber was supplemented with potassium ferricyanide

    Functionally Stable and Phylogenetically Diverse Microbial Enrichments from Microbial Fuel Cells during Wastewater Treatment

    Get PDF
    Microbial fuel cells (MFCs) are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD) was removed after an 8–13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m2, the maximum power density was 13 mW/m2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s) and regular introduction of microbial competitors. These results contribute significantly toward the practical application of MFC systems for long-term wastewater treatment as well as demonstrating MFC technology as a useful device to enrich for functionally stable microbial populations

    Machi: Neighborhood and Small Town—The Foundation for Urban Transformation in Japan

    Get PDF
    The term machi, signifying both neighborhood and small town, is a key element for understanding Japanese urban form and city planning. After tracing the origins of the term, this article explores the historic and contemporary significance of the concept and its particular spatial and socioeconomic forms. The article then argues that the concept of machi influenced the ways in which Japanese planners picked up foreign concepts through the nineteenth and particularly the twentieth century, absorbing some ideas and rejecting others. Building on their perception of the city as composed of urban units that allowed for planning in patchwork patterns, leading Japanese planners carefully selected models—independently of international appreciation—making, for example, the book The New Town by the German planner Gottfried Feder a standard reference. The article concludes by arguing that foreign observers must understand the concept of machi to comprehend contemporary Japanese neighborhoods, city life, and urban forms

    Simulating the Contribution of Coaggregation to Interspecies Hydrogen Fluxes in Syntrophic Methanogenic Consortia

    No full text
    A simple model (termed the syntrophy model) for simulating the contribution of coaggregation to interspecies hydrogen fluxes between syntrophic bacteria and methanogenic archaea is described. We applied it to analyzing partially aggregated syntrophic cocultures with various substrates, revealing that large fractions of hydrogen molecules were fluxed in aggregates

    A Tracheo-Innominate Artery Fistula Caused by a Dumon Stent.

    No full text

    Coaggregation Facilitates Interspecies Hydrogen Transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus

    No full text
    A thermophilic syntrophic bacterium, Pelotomaculum thermopropionicum strain SI, was grown in a monoculture or coculture with a hydrogenotrophic methanogen, Methanothermobacter thermautotrophicus strain ΔH. Microscopic observation revealed that cells of each organism were dispersed in a monoculture independent of the growth substrate. In a coculture, however, these organisms coaggregated to different degrees depending on the substrate; namely, a large fraction of the cells coaggregated when they were grown on propionate, but relatively few cells coaggregated when they were grown on ethanol or 1-propanol. Field emission-scanning electron microscopy revealed that flagellum-like filaments of SI cells played a role in making contact with ΔH cells. Microscopic observation of aggregates also showed that extracellular polymeric substance-like structures were present in intercellular spaces. In order to evaluate the importance of coaggregation for syntrophic propionate oxidation, allowable average distances between SI and ΔH cells for accomplishing efficient interspecies hydrogen transfer were calculated by using Fick's diffusion law. The allowable distance for syntrophic propionate oxidation was estimated to be approximately 2 μm, while the allowable distances for ethanol and propanol oxidation were 16 μm and 32 μm, respectively. Considering that the mean cell-to-cell distance in the randomly dispersed culture was approximately 30 μm (at a concentration in the mid-exponential growth phase of the coculture of 5 × 10(7) cells ml(−1)), it is obvious that close physical contact of these organisms by coaggregation is indispensable for efficient syntrophic propionate oxidation

    Applied Research by a Researcher in Basic Research Field

    No full text
    corecore