150 research outputs found

    Multiple synchronous primary malignancies induced by benzene exposure: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic exposure to high concentrations of benzene is usually associated with the development of haematological diseases. However, solid tumors induced by benzene exposure are less frequent.</p> <p>Case presentation</p> <p>We present an unusual case of triple synchronous primary malignancies most likely induced by occupational benzene exposure in a male patient. This spray painter was diagnosed as chronic aplastic anemia in his 21 years old after exposing to high concentration of benzene for three years. Then he was treated with glucocorticoid for four years. 40 years later, this patient developed three synchronous primary neoplasms with three different histologies including a basaloid squamous cell carcinoma of the esophagus, primary hepatocellular carcinoma, and well-differentiated squamous cell carcinoma of the gum.</p> <p>Conclusion</p> <p>This case reminds us that the occurrence of solid tumors should be monitored in workers with occupational history linked with a high concentration exposure to benzene, though it's rarely happened.</p

    Radical-containing particles activate dendritic cells and enhance Th17 inflammation in a mouse model of asthma

    Get PDF
    We identified a previously unrecognized component of airborne particulate matter (PM) formed in combustion and thermal processes, namely, environmentally persistent free radicals (EPFRs). The pulmonary health effects of EPFRs are currently unknown. In the present study, we used a model EPFR-containing pollutant-particle system referred to as MCP230. We evaluated the effects of MCP230 on the phenotype and function of bone marrow - derived dendritic cells (BMDCs) in vitro and lung dendritic cells (DCs) in vivo, and the subsequent T-cell response. We also investigated the adjuvant role of MCP230 on airway inflammation in a mouse model of asthma. MCP230 decreased intracellular reduced glutathione (GSH) and the GSH/oxidized glutathione ratio in BMDCs, and up-regulated the expression of costimulatory molecules CD80 and CD86 on DCs. The maturation of DCs was blocked by inhibiting oxidative stress or the uptake of MCP230. BMDCs exposed to MCP230 increased their antigen-specific T-cell proliferation in vitro. In a model of asthma, exposure to MCP230 exacerbated pulmonary inflammation, which was attributed to the increase of neutrophils and macrophages but not eosinophils. This result correlated with an increase in Th17 cells and cytokines, compared with non - MCP230-treated but ovalbumin (OVA) - challenged mice. The percentage of Th2 cells was comparable between OVA and OVA + MCP230 mice. Our data demonstrate that combustion-generated, EPFR-containing PM directly induced the maturation of DCs in an uptake-dependent and oxidative stress - dependent manner. Furthermore, EPFR-containing PM induced a Th17-biased phenotype in lung, accompanied by significant pulmonary neutrophilia. Exposure to EPFR-containing PM may constitute an important and unrecognized risk factor in the exacerbation and development of a severe asthma phenotype in humans

    Maternal exposure to combustion generated PM inhibits pulmonary Th1 maturation and concomitantly enhances postnatal asthma development in offspring

    Get PDF
    BACKGROUND: Epidemiological studies suggest that maternal exposure to environmental hazards, such as particulate matter, is associated with increased incidence of asthma in childhood. We hypothesized that maternal exposure to combustion derived ultrafine particles containing persistent free radicals (MCP230) disrupts the development of the infant immune system and results in aberrant immune responses to allergens and enhances asthma severity. METHODS: Pregnant C57/BL6 mice received MCP230 or saline by oropharyngeal aspiration on gestational days 10 and 17. Three days after the second administration, blood was collected from MCP230 or saline treated dams and 8-isoprostanes in the serum were measured to assess maternal oxidative stress. Pulmonary T cell populations were assayed in the infant mice at six days, three and six weeks of postnatal age. When the infant mice matured to adults (i.e. six weeks of age), an asthma model was established with ovalbumin (OVA). Airway inflammation, mucus production and airway hyperresponsiveness were then examined. RESULTS: Maternal exposure to MCP230 induced systemic oxidative stress. The development of pulmonary T helper (Th1/Th2/Th17) and T regulatory (Treg) cells were inhibited in the infant offspring from MCP230-exposed dams. As the offspring matured, the development of Th2 and Treg cells recovered and eventually became equivalent to that of offspring from non-exposed dams. However, Th1 and Th17 cells remained attenuated through 6 weeks of age. Following OVA sensitization and challenge, mice from MCP230-exposed dams exhibited greater airway hyperresponsiveness, eosinophilia and pulmonary Th2 responses compared to offspring from non-exposed dams. CONCLUSIONS: Our data suggest that maternal exposure to MCP230 enhances postnatal asthma development in mice, which might be related to the inhibition of pulmonary Th1 maturation and systemic oxidative stress in the dams

    Impact of key parameters on far-field temporary plugging and diverting fracturing in fractured reservoirs: A 2D finite element study

    Get PDF
    Temporary plugging and diverting fracturing technology is of utmost importance in stimulating fractured reservoirs. However, studies investigating the mechanisms of new fracture initiation and propagation during far-field temporary plugging and diverting fracturing have been scarce, and the optimal technique parameters are still unknown. To address this issue, a two-dimensional fracturing model is developed via the finite element method in this work, which simulates the temporary plugging effect using the equivalent viscosity temporary blockage method and the unrestrained growth of hydraulic fractures by globally embedding the cohesive element of zero-thickness. Then, some key parameters for far-field temporary plugging and diverting fracturing in fractured reservoirs are discussed and some interesting insights are given. Firstly, a lower-permeability plugging zone expedites the pressure increase within the fracture, thereby boosting the probability of achieving temporary plugging and diverting fracturing. The size of the plugging zone significantly impacts the pressure increase within the fracture. Secondly, the plugging position should be determined considering the density and arrangement of natural fractures in the layer, and the temporary plugging construction should be performed after maximizing the elongation of initial hydraulic fracture. Thirdly, an increase in fluid viscosity and injection displacement promotes the pressure rise inside the fracture. Nonetheless, the impact of injection displacement on temporary plugging and diverting fracturing surpasses that of fluid viscosity. Overall, the established model can inform the design of temporary plugging and diverting fracturing in fractured reservoirs.Document Type: Original articleCited as: Liu, P., Lou, F., Du, J., Chen, X., Liu, J., Wang, M. Impact of key parameters on far-field temporary plugging and diverting fracturing in fractured reservoirs: A 2D finite element study. Advances in Geo-Energy Research, 2023, 10(2): 104-116. https://doi.org/10.46690/ager.2023.11.0

    Agriculture intensifies soil moisture decline in Northern China

    Get PDF
    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50cm) volumetric water content during the growing season has declined significantly (p < 0.01), with a trend of −0.011 to −0.015 m3 m−3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system

    Resolvase OsGEN1 Mediates DNA Repair by Homologous Recombination

    Full text link

    Pulmonary function test-related prognostic models in non-small cell lung cancer patients receiving neoadjuvant chemoimmunotherapy

    Get PDF
    BackgroundThis study aimed to establish a comprehensive clinical prognostic risk model based on pulmonary function tests. This model was intended to guide the evaluation and predictive management of patients with resectable stage I-III non-small cell lung cancer (NSCLC) receiving neoadjuvant chemoimmunotherapy.MethodsClinical pathological characteristics and prognostic survival data for 175 patients were collected. Univariate and multivariate Cox regression analyses, and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to identify variables and construct corresponding models. These variables were integrated to develop a ridge regression model. The models’ discrimination and calibration were evaluated, and the optimal model was chosen following internal validation. Comparative analyses between the risk scores or groups of the optimal model and clinical factors were conducted to explore the potential clinical application value.ResultsUnivariate regression analysis identified smoking, complete pathologic response (CPR), and major pathologic response (MPR) as protective factors. Conversely, T staging, D-dimer/white blood cell ratio (DWBCR), D-dimer/fibrinogen ratio (DFR), and D-dimer/minute ventilation volume actual ratio (DMVAR) emerged as risk factors. Evaluation of the models confirmed their capability to accurately predict patient prognosis, exhibiting ideal discrimination and calibration, with the ridge regression model being optimal. Survival analysis demonstrated that the disease-free survival (DFS) in the high-risk group (HRG) was significantly shorter than in the low-risk group (LRG) (P=2.57×10-13). The time-dependent receiver operating characteristic (ROC) curve indicated that the area under the curve (AUC) values at 1 year, 2 years, and 3 years were 0.74, 0.81, and 0.79, respectively. Clinical correlation analysis revealed that men with lung squamous cell carcinoma or comorbid chronic obstructive pulmonary disease (COPD) were predominantly in the LRG, suggesting a better prognosis and potentially identifying a beneficiary population for this treatment combination.ConclusionThe prognostic model developed in this study effectively predicts the prognosis of patients with NSCLC receiving neoadjuvant chemoimmunotherapy. It offers valuable predictive insights for clinicians, aiding in developing treatment plans and monitoring disease progression

    Gene Network for Identifying the Entropy Changes of Different Modules in Pediatric Sepsis

    No full text
    Background/Aims: Pediatric sepsis is a disease that threatens life of children. The incidence of pediatric sepsis is higher in developing countries due to various reasons, such as insufficient immunization and nutrition, water and air pollution, etc. Exploring the potential genes via different methods is of significance for the prevention and treatment of pediatric sepsis. This study aimed to identify potential genes associated with pediatric sepsis utilizing analysis of gene network and entropy. Methods: The mRNA expression in the blood samples collected from 20 septic children and 30 healthy controls was quantified by using Affymetrix HG-U133A microarray. Two condition-specific protein-protein interaction networks (PINs), one for the healthy control and the other one for the children with sepsis, were deduced by combining the fundamental human PINs with gene expression profiles in the two phenotypes. Subsequently, distinct modules from the two conditional networks were extracted by adopting a maximal clique-merging approach. Delta entropy (&#x0394;S) was calculated between sepsis and control modules. Results: Then, key genes displaying changes in gene composition were identified by matching the control and sepsis modules. Two objective modules were obtained, in which ribosomal protein RPL4 and RPL9 as well as TOP2A were probably considered as the key genes differentiating sepsis from healthy controls. Conclusion: According to previous reports and this work, TOP2A is the potential gene therapy target for pediatric sepsis. The relationship between pediatric sepsis and RPL4 and RPL9 needs further investigation
    • …
    corecore