56 research outputs found

    Large Trajectory Models are Scalable Motion Predictors and Planners

    Full text link
    Motion prediction and planning are vital tasks in autonomous driving, and recent efforts have shifted to machine learning-based approaches. The challenges include understanding diverse road topologies, reasoning traffic dynamics over a long time horizon, interpreting heterogeneous behaviors, and generating policies in a large continuous state space. Inspired by the success of large language models in addressing similar complexities through model scaling, we introduce a scalable trajectory model called State Transformer (STR). STR reformulates the motion prediction and motion planning problems by arranging observations, states, and actions into one unified sequence modeling task. With a simple model design, STR consistently outperforms baseline approaches in both problems. Remarkably, experimental results reveal that large trajectory models (LTMs), such as STR, adhere to the scaling laws by presenting outstanding adaptability and learning efficiency. Qualitative results further demonstrate that LTMs are capable of making plausible predictions in scenarios that diverge significantly from the training data distribution. LTMs also learn to make complex reasonings for long-term planning, without explicit loss designs or costly high-level annotations

    The Early Cretaceous extensional deformation in the southeastern Beishan Range, central Asia: Constrains from 2D seismic reflection profile interpretation and apatite fission track thermochronology

    Get PDF
    Objective  The Beishan Range occupies a key position in Central Asia. This study aims to deepen the understanding of the timing, intracontinental deformation processes, and their dynamic mechanisms in the Late Mesozoic on the southern margin of the Central Asian Orogenic Belt (CAOB).   Methods  We conducted detailed analyses of the Early Cretaceous extensional and earlier compressional structures in the southeastern Beishan Range through field geological observations, interpretation of 2D reflection seismic profiles, and apatite fission track thermochronology.   Conclusion  Field observations show that Lower–Middle Jurassic strata have been strongly deformed by numerous thrusts and folds. 2D seismic reflection profiles reveal two NE- to NEE-striking normal faults. The Suosuojing fault is a SE-dipping low-angle listric normal fault, while the Wudaoming fault is a NW-dipping high-angle normal fault. These normal faults cut through the early-formed fold-thrust system, indicating a transition from contraction to extension. The Suosuojing and Wudaoming faults, respectively, define the northwestern and southeastern boundaries of the Early Cretaceous Zongkouzi basin. The Zongkouzi basin exhibits a graben geometry, with Lower Cretaceous strata displaying typical growth-strata relationships, suggesting that the normal faults were active during the late Early Cretaceous. Thermal history modeling results from apatite fission track data indicate that the footwall of the Suosuojing fault experienced rapid cooling between 132 and 110 Ma. This rapid cooling phase was closely related to the footwall exhumation during the normal slip of the Suosuojing fault. We argue that the Late Mesozoic intracontinental contraction–extension transition in the southeastern Beishan Range likely occurred between ~133 Ma and ~129 Ma in the late Early Cretaceous. The collapse of the thickened crust and coupled mantle upwelling triggered the Early Cretaceous extensional deformation in the southern CAOB

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (π→μνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam
    • …
    corecore