6 research outputs found

    Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon

    Get PDF
    Microwave pyrolysis using a well-mixed bed of activated carbon as both the microwave absorber and reaction bed was investigated for its potential to recover useful products from waste palm cooking oil – a cooking oil widely used in Asia. The carbon bed provided rapid heating (∼18 °C/min) and a localized reaction hot zone that thermally promoted extensive pyrolysis cracking of the waste oil at 450 °C, leading to increased production of a biofuel product in a process taking less than 25 min. It also created a reducing reaction environment that prevented the formation of undesirable oxidized compounds in the biofuel. The pyrolysis produced a biofuel product that is low in oxygen, free of sulphur, carboxylic acid and triglycerides, and which also contains light C10_{10}-C15_{15} hydrocarbons and a high calorific value nearly comparable to diesel fuel, thus showing great potential to be used as fuel. This pyrolysis approach offers an attractive alternative to transesterification that avoids the use of solvents and catalysts, and the need to remove free fatty acids and glycerol from the hydrocarbon product. The pyrolysis apparatus operated with an electrical power input of 1.12 kW was capable of producing a biofuel with an energy content equivalent to about 3 kW, showing a positive energy ratio of 2.7 and ≥73% recovery of the energy input to the system. The results show that the pyrolysis approach has huge potential as a technically and energetically viable means for the recovery of biofuels from the waste oil.The authors acknowledge the financial support by the Ministry of Science, Technology and Innovation and the Ministry of Higher Education Malaysia for the conduct of the research under the E-Science fund (UMT/RMC/SF/13/52072(5), Vot 52072) and the FRGS grant (FRGS/1/2016/TK07/UMT/02/3, Vot 59434).This is the author accepted manuscript. The final version is available from Elsevier via https://doi.org/10.1016/j.energy.2016.09.07

    Pyrolysis using microwave absorbents as reaction bed: An improved approach to transform used frying oil into biofuel product with desirable properties

    Get PDF
    Used frying oil (UFO), a waste produced in large volume each year worldwide, represents a potential resource for biofuel production rather than a disposal problem for modern society. Pyrolysis technique using microwave heating offers a promising approach for the conversion of UFO into biofuel products with improved properties. In this study, pyrolysis of UFO was performed by contacting with a bed of microwave absorbents heated by microwave radiation. The pyrolysis approach was examined using different materials as the reaction bed, comprising particulate carbon, activated carbon and mesoporous aluminosilicate (MCM-41). The use of particulate and activated carbon as the reaction bed provided a fast heating rate and extensive cracking capacity to pyrolyze the used oil, thus showing favorable features that could lead to short process time and less energy usage. This resulted in a production of a high yield of a biofuel product (up to 73 wt%) in a process taking less than 35 min. The biofuel showed a composition dominated by light C5_{5}-C20_{20} aliphatic hydrocarbons with low amounts of oxygenated compounds (≤11%). In particular, the oil product obtained from activated carbon bed showed a low nitrogen content and was free of carboxylic acid and sulphur. The absence of carboxylic acids with low amounts of oxygenated compounds could reduce the formation of oxygenated by-products that could generate undesirable acidic tar or potentially hazardous sludge in the biofuel during storage. Combined with the detection of a high calorific value (46 MJ/kg) nearly comparable to diesel fuel, the biofuel shows great promise to be upgraded for use as a ‘cleaner’ fuel source with potentially reduced oxygenated by-products plus low or zero emissions of NOx_{x} and SOx_{x} during the use of the fuel in combustion process. This study also revealed that the use of activated carbon bed results in the highest energy recovery (88–90%) from the used frying oil. Our results demonstrated that the use of a microwave-heated reaction bed of activated carbon shows great potential as an improved and sustainable pyrolysis approach that is energy-efficient and timesaving for the recycling of used frying oil into a biofuel product with desirable properties. This pyrolysis approach provides an alternative to transesterification that avoids the use of solvents and catalysts, and thus could be developed further as a promising route to recycle various types of waste and biomass materials

    Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review

    Full text link
    The growing health and environmental concerns associated with the consumption of fossil energy sources catalyze the production of biofuels as renewable energy carriers for heat and electricity generation. Production of biofuels from biomass, being the most available renewable feedstock, is advantageous as it results in increased mitigation of GHGs (greenhouse gas) emissions. Co-firing biomass pellet in power plants is a promising way of using biomass for renewable energy generation. Among the various thermochemical conversion routes, torrefaction represents an efficient low-temperature pyrolysis technology to produce co-firing biofuel at 200–300 °C with low conversion losses. However, the current practice of using conventional heating in batch operation adversely affects oil palm torrefaction, leading to low throughput, low biomass processing rate, and poor heat transfer rate. Integration of microwave technology has emerged as a promising solution to enhance the upscaling capacity of torrefaction technology, offering higher production rates and better volumetric heat transfer. The present work critically reviews and discusses the latest developments in the torrefaction of oil palm waste to produce energy-dense biochar with reduced moisture content (for better water resistivity and durability). The use of microwave radiation as a heating method could also catalyze the torrefaction reaction with lower activation energy. In conclusion, microwave systems incorporated into continuous reactors seem to have great potential in streamlining torrefaction processes, thereby producing environmentally friendly energy
    corecore