8 research outputs found

    Clues from nearby galaxies to a better theory of cosmic evolution

    Full text link
    The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding universe. But the properties of nearby galaxies that can be observed in greatest detail suggest a still better theory would more rapidly gather matter into galaxies and groups of galaxies. This happens in theoretical ideas now under discussion.Comment: published in Natur

    Tests of chameleon gravity

    Get PDF
    Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f(R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments

    Nonlinear structure formation in the cubic Galileon gravity model

    No full text
    We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the ECOSMOG code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by similar to 20% with respect to the standard ACDM model today. The modified expansion rate accounts for similar to 15% of this enhancement, while the fifth force is responsible for only similar to 5%. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime (k greater than or similar to 0.1hMpc(-1)), the fifth force leads to only a modest increase (less than or similar to 8%) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other models with the same screening mechanism. The screening also results in the fifth force increasing the number density of halos by less than 10%, on all mass scales. Our results show that the screening does not ruin the validity of linear theory on large scales which anticipates very strong constraints from galaxy clustering data. We also show that, whilst the model gives an excellent match to CMB data on small angular scales (1 greater than or similar to 50), the predicted integrated Sachs-Wolfe effect is in tension with Planck/WMAP results

    Nonlinear structure formation in nonlocal gravity

    No full text
    We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from ACDM by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength (similar to 6% larger today). Compared to ACDM today, in the nonlocal model, massive haloes are slightly more abundant (by similar to 10% at M similar to 10(14) M-circle dot/h) and concentrated (approximate to 8% enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For k greater than or similar to 1h/Mpc, the amplitude of the nonlinear matter and velocity divergence power spectra exhibits a modest enhancement of similar to 12% to 15%, compared to ACDM today. This suggests that this model might only be distinguishable from ACDM by future observational missions. We point out that the absence of a screening mechanism may lead to tensions with Solar System tests due to local time variations of the gravitational strength, although this is subject to assumptions about the local time evolution of background averaged quantities

    Halo model and halo properties in Galileon gravity cosmologies

    No full text
    We investigate the performance of semi-analytical modelling of large-scale structure in Galileon gravity cosmologies using results from N-body simulations. We focus on the Cubic and Quartic Galileon models that provide a reasonable fit to CMB, SNIa and BAO data. We demonstrate that the Sheth-Tormen mass function and linear halo bias can be calibrated to provide a very good fit to our simulation results. We also find that the halo concentration-mass relation is well fitted by a power law. The nonlinear matter power spectrum computed in the halo model approach is found to be inaccurate in the mildly nonlinear regime, but captures reasonably well the effects of the Vainshtein screening mechanism on small scales. In the Cubic model, the screening mechanism hides essentially all of the effects of the fifth force inside haloes. In the case of the Quartic model, the screening mechanism leaves behind residual modifications to gravity, which make the effective gravitational strength time-varying and smaller than the standard value. Compared to normal gravity, this causes a deficiency of massive haloes and leads to a weaker matter clustering on small scales. For both models, we show that there are realistic halo occupation distributions of Luminous Red Galaxies that can match both the observed large-scale clustering amplitude and the number density of these galaxies

    Simulating the quartic Galileon gravity model on adaptively refined meshes

    No full text
    We develop a numerical algorithm to solve the high-order nonlinear derivative-coupling equation associated with the quartic Galileon model, and implement it in a modified version of the RAMSES N-body code to study the effect of the Galileon field on the large-scale matter clustering. The algorithm is tested for several matter field con figurations with different symmetries, and works very well. This enables us to perform the first simulations for a quartic Galileon model which provides a good fit to the cosmic microwave background (CMB) anisotropy, supernovae and baryonic acoustic oscillations (BAO) data. Our result shows that the Vainshtein mechanism in this model is very efficient in suppressing the spatial variations of the scalar field. However, the time variation of the effective Newtonian constant caused by the curvature coupling of the Galileon field cannot be suppressed by the Vainshtein mechanism. This leads to a significant weakening of the strength of gravity in high-density regions at late times, and therefore a weaker matter clustering on small scales. We also find that without the Vainshtein mechanism the model would have behaved in a completely different way, which shows the crucial role played by nonlinearities in modified gravity theories and the importance of performing self-consistent N-body simulations for these theories
    corecore