21 research outputs found

    Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs), the impact of these potential sources of contamination on clinical infection needs to be clarified.</p> <p>Methods</p> <p>This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant <it>Staphylococcus aureus </it>(MRSA), <it>Pseudomonas aeruginosa </it>and <it>Acinetobacter baumannii</it>, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram.</p> <p>Results</p> <p>Our results revealed a 17.4% (49/282) contamination rate of these computer devices by <it>S. aureus</it>, <it>Acinetobacter </it>spp. or <it>Pseudomonas </it>spp. The contamination rates of MRSA and <it>A. baumannii </it>in the ward computers were 1.1% and 4.3%, respectively. No <it>P. aeruginosa </it>was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, <it>A. baumannii </it>isolates on two ward computers had the same pulsotype.</p> <p>Conclusion</p> <p>With good hand hygiene compliance, we found relatively low contamination rates of MRSA, <it>P. aeruginosa </it>and <it>A. baumannii </it>on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation.</p

    Sheldon Spectrum and the Plankton Paradox: Two Sides of the Same Coin : A trait-based plankton size-spectrum model

    Get PDF
    The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model: it describes the abundance of phyto- and zooplankton cells as a function of both size and species trait (the maximal size before cell division). It incorporates growth due to resource consumption and predation on smaller cells, death due to predation, and a flexible cell division process. We give analytic solutions at steady state for both the within-species size distributions and the relative abundances across species

    Isogeometric design of elastic arches for maximum fundamental frequency

    No full text
    The isogeometric paradigm is aimed at unifying the geometric and analysis descriptions of engineering problems. This unification is brought about by employing the same basis functions describing the geometry to approximate the physical response. Non-uniform rational B-splines (NURBS) are commonly used for this purpose and are adopted in the present work for the design of elastic arches. Design for optimal shape and stiffness distribution is considered. Manufacturing constraints are imposed on shape and sizing variables. Shape changes are represented by altering spatial location of the control points and the associated weights. Sizing variables, that control the stiffness distribution, are defined at the control points and interpolated using the same spline basis functions. Since analysis, sizing, and shape design share the same underlying description, consistent discrete sensitivities can be easily evaluated analytically, greatly improving the performance of the optimisation process. While sizing should reflect the influence of local stress states, shape design is preferably performed at a global level. Thus, a multilevel approach is utilised, where shape design is carried out at a coarser level. Projecting the shape design sensitivities bridges the gap between the different levels. A variational formulation of essential manufacturing constraints for sizing and shape optimal design is introduced. The design framework is applied to fundamental frequency maximisation problems.Aerospace Structures & Design MethodologyAerospace Engineerin

    Chemical Durability of Glasses

    No full text
    International audienceThe chemical durability of silicate glasses has long been studied for many applications, in particular when glasses are subjected to environmental weathering and aqueous corrosion. Typical applications include optical instruments, glass vessels, radioactive waste confinement, and bone reparation. Glass corrosion involves ion exchange, water diffusion, network dissolution-recondensation, and secondary phase precipitation. These reactions may impact, among other things, the release of contaminants from waste glasses, and the glass mechanical, optical and catalytic properties. The glass corrosion mechanisms and alteration product formation have been well studied as a function of many environmental parameters (temperature, pH, water composition, etc.).The present chapter describes the general phenomena behind glass corrosion and details glass dissolution in aqueous conditions on one hand and glass vapor hydration on the other hand. The latter phenomenon has not received the same level of attention in the literature relative to the corrosion in aqueous solutions. Research and development needs, in particular in complex systems such as radioactive waste geological repositories, are discussed in the conclusion of the chapter
    corecore