467 research outputs found

    Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx

    Get PDF
    Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates. The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group's history

    Exact Results and Holography of Wilson Loops in N=2 Superconformal (Quiver) Gauge Theories

    Full text link
    Using localization, matrix model and saddle-point techniques, we determine exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge theories. Focusing at planar and large `t Hooft couling limits, we compare its asymptotic behavior with well-known exponential growth of Wilson loop in N=4 super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential growth -- at most, it can grow a power of `t Hooft coupling. For theory with gauge group SU(N) x SU(N) and bifundamental hypermultiplets, there are two Wilson loops associated with two gauge groups. We find Wilson loop in untwisted sector grows exponentially large as in N=4 super Yang-Mills theory. We then find Wilson loop in twisted sector exhibits non-analytic behavior with respect to difference of two `t Hooft coupling constants. By letting one gauge coupling constant hierarchically larger/smaller than the other, we show that Wilson loops in the second type theory interpolate to Wilson loop in the first type theory. We infer implications of these findings from holographic dual description in terms of minimal surface of dual string worldsheet. We suggest intuitive interpretation that in both type theories holographic dual background must involve string scale geometry even at planar and large `t Hooft coupling limit and that new results found in the gauge theory side are attributable to worldsheet instantons and infinite resummation therein. Our interpretation also indicate that holographic dual of these gauge theories is provided by certain non-critical string theories.Comment: 52 pages, 7 figures v2. more figures embedded v3. minor stylistic changes, v4. published versio

    Early and Middle Holocene Hunter-Gatherer Occupations in Western Amazonia: The Hidden Shell Middens

    Get PDF
    We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged. © 2013 Lombardo et al

    Neural Representations of Personally Familiar and Unfamiliar Faces in the Anterior Inferior Temporal Cortex of Monkeys

    Get PDF
    To investigate the neural representations of faces in primates, particularly in relation to their personal familiarity or unfamiliarity, neuronal activities were chronically recorded from the ventral portion of the anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of a facial identification task using either personally familiar or unfamiliar faces as stimuli. By calculating the correlation coefficients between neuronal responses to the faces for all possible pairs of faces given in the task and then using the coefficients as neuronal population-based similarity measures between the faces in pairs, we analyzed the similarity/dissimilarity relationship between the faces, which were potentially represented by the activities of a population of the face-responsive neurons recorded in the area AITv. The results showed that, for personally familiar faces, different identities were represented by different patterns of activities of the population of AITv neurons irrespective of the view (e.g., front, 90° left, etc.), while different views were not represented independently of their facial identities, which was consistent with our previous report. In the case of personally unfamiliar faces, the faces possessing different identities but presented in the same frontal view were represented as similar, which contrasts with the results for personally familiar faces. These results, taken together, outline the neuronal representations of personally familiar and unfamiliar faces in the AITv neuronal population

    Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit

    Get PDF
    Background: Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. Methods: We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin. Results: In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. Conclusions: The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB

    Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels

    Get PDF
    Voltage-gated Ca2+ channels couple membrane depolarization to Ca2+-dependent intracellular signaling events. This is achieved by mediating Ca2+ ion influx or by direct conformational coupling to intracellular Ca2+ release channels. The family of Cav1 channels, also termed L-type Ca2+ channels (LTCCs), is uniquely sensitive to organic Ca2+ channel blockers and expressed in many electrically excitable tissues. In this review, we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within their pore-forming α1 subunits causing hypokalemic periodic paralysis and malignant hyperthermia sensitivity (Cav1.1 α1), incomplete congenital stationary night blindness (CSNB2; Cav1.4 α1), and Timothy syndrome (Cav1.2 α1; reviewed separately in this issue). Cav1.3 α1 mutations have not been reported yet in humans, but channel loss of function would likely affect sinoatrial node function and hearing. Studies in mice revealed that LTCCs indirectly also contribute to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Cav2.1 α1 in tottering mice. Ca2+ channelopathies provide exciting disease-related molecular detail that led to important novel insight not only into disease pathophysiology but also to mechanisms of channel function

    Spectroscopic evidence for an all-ferrous [4Fe–4S]0 cluster in the superreduced activator of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans

    Get PDF
    The key enzyme of the fermentation of glutamate by Acidaminococcus fermentans, 2-hydroxyglutarylcoenzyme A dehydratase, catalyzes the reversible syn-elimination of water from (R)-2-hydroxyglutaryl-coenzyme A, resulting in (E)-glutaconylcoenzyme A. The dehydratase system consists of two oxygen-sensitive protein components, the activator (HgdC) and the actual dehydratase (HgdAB). Previous biochemical and spectroscopic studies revealed that the reduced [4Fe–4S]+ cluster containing activator transfers one electron to the dehydratase driven by ATP hydrolysis, which activates the enzyme. With a tenfold excess of titanium(III) citrate at pH 8.0 the activator can be further reduced, yielding about 50% of a superreduced [4Fe–4S]0 cluster in the all-ferrous state. This is inferred from the appearance of a new Mössbauer spectrum with parameters δ = 0.65 mm/s and ΔEQ = 1.51–2.19 mm/s at 140 K, which are typical of Fe(II)S4 sites. Parallel-mode electron paramagnetic resonance (EPR) spectroscopy performed at temperatures between 3 and 20 K showed two sharp signals at g = 16 and 12, indicating an integer-spin system. The X-band EPR spectra and magnetic Mössbauer spectra could be consistently simulated by adopting a total spin St = 4 for the all-ferrous cluster with weak zero-field splitting parameters D = −0.66 cm−1 and E/D = 0.17. The superreduced cluster has apparent spectroscopic similarities with the corresponding [4Fe–4S]0 cluster described for the nitrogenase Fe-protein, but in detail their properties differ. While the all-ferrous Fe-protein is capable of transferring electrons to the MoFe-protein for dinitrogen reduction, a similar physiological role is elusive for the superreduced activator. This finding supports our model that only one-electron transfer steps are involved in dehydratase catalysis. Nevertheless we discuss a common basic mechanism of the two diverse systems, which are so far the only described examples of the all-ferrous [4Fe–4S]0 cluster found in biology

    Localisation and Function of the Endocannabinoid System in the Human Ovary

    Get PDF
    Although anandamide (AEA) had been measured in human follicular fluid and is suggested to play a role in ovarian follicle and oocyte maturity, its exact source and role in the human ovary remains unclear.Immunohistochemical examination of normal human ovaries indicated that the endocannabinoid system was present and widely expressed in the ovarian medulla and cortex with more intense cannabinoid receptor 2 (CB2) than CB1 immunoreactivity in the granulosa cells of primordial, primary, secondary, tertiary follicles, corpus luteum and corpus albicans. The enzymes, fatty acid amide hydrolase (FAAH) and N-acyclphosphatidylethanolamine-phospholipase D (NAPE-PLD), were only found in growing secondary and tertiary follicles and corpora lutea and albicantes. The follicular fluid (FF) AEA concentrations of 260 FF samples, taken from 37 infertile women undergoing controlled ovarian hyperstimulation for in vitro fertilisation and intracytoplasmic sperm injection with embryo transfer, were correlated with ovarian follicle size (P = 0.03). Significantly higher FF AEA concentrations were also observed in mature follicles (1.43+/-0.04 nM; mean+/-SEM) compared to immature follicles (1.26+/-0.06 nM), P = 0.0142 and from follicles containing morphologically assessed mature oocytes (1.56+/-0.11 nM) compared to that containing immature oocytes (0.99+/-0.09 nM), P = 0.0011. ROC analysis indicated that a FF AEA level of 1.09 nM could discriminate between mature and immature oocytes with 72.2% sensitivity and 77.14% specificity, whilst plasma AEA levels and FF AEA levels on oocyte retrieval day were not significantly different (P = 0.23).These data suggest that AEA is produced in the ovary, is under hormonal control and plays a role in folliculogenesis, preovulatory follicle maturation, oocyte maturity and ovulation

    Propagation of Epileptiform Events across the Corpus Callosum in a Cingulate Cortical Slice Preparation

    Get PDF
    We report on a novel mouse in vitro brain slice preparation that contains intact callosal axons connecting anterior cingulate cortices (ACC). Callosal connections are demonstrated by the ability to regularly record epileptiform events between hemispheres (bilateral events). That the correlation of these events depends on the callosum is demonstrated by the bisection of the callosum in vitro. Epileptiform events are evoked with four different methods: (1) bath application of bicuculline (a GABA-A antagonist); (2) bicuculline+MK801 (an NMDA receptor antagonist), (3) a zero magnesium extracellular solution (0Mg); (4) focal application of bicuculline to a single cortical hemisphere. Significant increases in the number of epileptiform events, as well as increases in the ratio of bilateral events to unilateral events, are observed during bath applications of bicuculline, but not during applications of bicuculline+MK-801. Long ictal-like events (defined as events >20 seconds) are only observed in 0Mg. Whole cell patch clamp recordings of single neurons reveal strong feedforward inhibition during focal epileptiform events in the contralateral hemisphere. Within the ACC, we find differences between the rostral areas of ACC vs. caudal ACC in terms of connectivity between hemispheres, with the caudal regions demonstrating shorter interhemispheric latencies. The morphologies of many patch clamped neurons show callosally-spanning axons, again demonstrating intact callosal circuits in this in vitro preparation
    • …
    corecore