1,941 research outputs found

    Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source

    Full text link
    As typically implemented, single photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand.Comment: 4 pages, LaTex, 2 figures, twocolumn and RevTex Style for PR

    Single image example-based super-resolution using cross-scale patch matching and Markov random field modelling

    Get PDF
    Example-based super-resolution has become increasingly popular over the last few years for its ability to overcome the limitations of classical multi-frame approach. In this paper we present a new example-based method that uses the input low-resolution image itself as a search space for high-resolution patches by exploiting self-similarity across different resolution scales. Found examples are combined in a high-resolution image by the means of Markov Random Field modelling that forces their global agreement. Additionally, we apply back-projection and steering kernel regression as post-processing techniques. In this way, we are able to produce sharp and artefact-free results that are comparable or better than standard interpolation and state-of-the-art super-resolution techniques

    ON THE EQUIVALENCE AMONG SOME CHIRAL-BOSON THEORIES

    Get PDF
    We make a comparative study of chiral-boson theories in the Florenani-Jackiw (FJ) and linear constraint formulations. A special attention is given to the case with an improved way of implementing the linear constraint. We show that it has the same spectrum of the FJ formulation.Comment: 11 pages, Late

    Exactly soluble model for self-gravitating D-particles with the wormhole

    Full text link
    We consider D-particles coupled to the CGHS dilaton gravity and obtain the exact wormhole geometry and trajectories of D-particles by introducing the exotic matter. The initial static wormhole background is not stable after infalling D-particles due to the classical backreaction of the geometry so that the additional exotic matter source should be introduced for the stability. Then, the traversable wormhole geometry naturally appears and the D-particles can travel through it safely. Finally, we discuss the dynamical evolution of the wormhole throat and the massless limit of D-particles.Comment: 16 pages, 3 figures, revte

    Wormhole phase in the RST model

    Full text link
    We show that the RST model describing the exactly soluble black hole model can have a dynamical wormhole solution along with an appropriate boundary condition. The necessary exotic matter which is usually negative energy density is remarkably produced by the quantization of the infalling matter fields. Then the asymptotic geometry in the past is two-dimensional anti-de Sitter(AdS2_2), which implies the exotic matter is negative. As time goes on, the wormhole eventually evolves into the black hole and its Hawking radiation appears. The throat of the static RST wormhole is lower-bounded but in the presence of infalling matter it collapses to a black hole.Comment: v1. REVTeX3, 12 pages and 1 figure; v2. JHEP3, 10 pages and 1 figure, version published in JHE

    Absorption cross section in the topologically massive gravity at the critical point

    Full text link
    The absorption cross section for the the warped AdS3_3 black hole background shows that it is larger than the area even if the s-wave limit is considered. It raises some question whether the deviation from the areal cross section is due to the warped configuration of the geometry or the rotating coordinate system, where these two effects are mixed up in the warped AdS3_3 black hole. So, we study the low-frequency scattering dynamics of propagating scalar fields under the warped AdS3_3 background at the critical point which reduces to the BTZ black hole in the rotating frame without the warped factor, which shows that the deformation effect at the critical point does not appear.Comment: 12 pages, LaTe

    BFT embedding of noncommutative D-brane system

    Get PDF
    We study noncommutative geometry in the framework of the Batalin-Fradkin-Tyutin(BFT) scheme, which converts second class constraint system into first class one. In an open string theory noncommutative geometry appears due to the mixed boundary conditions having second class constraints, which arise in string theory with DD-branes under a constant Neveu-Schwarz BB-field. Introduction of a new coordinate yy on DD-brane through BFT analysis allows us to obtain the commutative geometry with the help of the first class constraints, and the resulting action corresponding to the first class Hamiltonian in the BFT Hamiltonian formalism has a new local symmetry.Comment: 12 pages, no figure, some expressions corrected, to appear Phys. Rev.

    New, efficient and robust, fiber-based quantum key distribution schemes

    Get PDF
    We present a new fiber based quantum key distribution (QKD) scheme which can be regarded as a modification of an idea proposed by Inoue, Waks and Yamamoto (IWY) [1]. The scheme described here uses a single phase modulator and two differential delay elements in series at the transmitter that form an interferometer when combined with a third differential delay element at the receiver. The protocol is characterized by a high efficiency, reduced exposure to an attack by an eavesdropper, and higher sensitivity to such an attack when compared to other QKD schemes. For example, the efficiency with which transmitted data contribute to the private key is 3/4 compared with 1/4 for BB84 [2]. Moreover, an eavesdropper can aquire a maximum of 1/3 of the key which leads to an error probability in the private key of 1/3. This can be compared to 1/2 and 1/4 for these same parameters in both BB84 and IWY. The combination of these considerations should lead to increased range and key distribution rate over present fiber-based QKD schemes.Comment: 4 pages, 5 figures, 1 equatio

    Quasinormal modes and hidden conformal symmetry in the Reissner-Nordstrom black hole

    Full text link
    It is shown that the scalar wave equation in the near-horizon limit respects a hidden SL(2,R) invariance in the Reissner-Nordstrom (RN) black hole spacetimes. We use the SL(2,R) symmetry to determine algebraically the purely imaginary quasinormal frequencies of the RN black hole. We confirm that these are exactly quasinormal modes of scalar perturbation around the near-extremal black hole.Comment: 17 pages, 1 figure, version to appear in EPJ

    Phantom Wormholes in (2+1)-dimensions

    Full text link
    In this paper, we have constructed a (2+1)-dimensional wormhole using inhomogeneous and anisotropic distribution of phantom energy. We have determined the exact form of the equation of state of phantom energy that supports the wormhole structure. Interestingly, this equation of state is linear but variable one and is dependent only on the radial parameter of the model.Comment: 10 pages, 5 figure
    • …
    corecore