551 research outputs found

    Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC

    Get PDF
    The nuclear spin-dependent parity nonconserving (PNC) interaction arising from a combination of the hyperfine interaction and the coherent, spin-independent, PNC interaction from Z exchange is evaluated using many-body perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that is about 40% smaller than that found previously by Bouchiat and Piketty [Phys. Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase in the experimental value of nuclear anapole moment and exacerbates differences between constraints on PNC meson coupling constants obtained from the Cs anapole moment and those obtained from other nuclear parity violating experiments. Nuclear spin-dependent PNC dipole matrix elements, including contributions from the combined weak-hyperfine interaction, are also given for the 7s-8s transition in 211Fr and for transitions between ground-state hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table

    Comparison of the Parkes and FAST FRB DM distribution

    Get PDF
    We model the fast radio burst (FRB) dispersion measure (DM) distribution for the Five-hundred-meter Aperture Spherical Telescope (FAST) and compare this with the four FRBs published in the literature to date. We compare the DM distribution of Parkes and FAST, taking advantage of the similarity between their multibeam receivers. Notwithstanding the limited sample size, we observe a paucity of events at low DM for all evolutionary models considered, resulting in a sharp rise in the observed cumulative distribution function in the region of 1000 pc cm-3 â‰Č DM â‰Č2000 pc cm-3. These traits could be due to statistical fluctuations (0.12 ≀ p ≀ 0.22), a complicated energy distribution or break in an energy distribution power law, spatial clustering, observational bias, or outliers in the sample (e.g. an excessive DMHost as recently found for FRB 20190520B). The energy distribution in this regime is unlikely to be adequately constrained until further events are detected. Modelling suggests that FAST may be well placed to discriminate between redshift evolutionary models and to probe the helium ionization signal of the intergalactic medium

    Law, politics and the governance of English and Scottish joint-stock companies 1600-1850

    Get PDF
    This article examines the impact of law on corporate governance by means of a case study of joint-stock enterprise in England and Scotland before 1850. Based on a dataset of over 450 company constitutions together with qualitative information on governance practice, it finds little evidence to support the hypothesis that common-law regimes such as England were more supportive of economic growth than civil-law jurisdictions such as Scotland: indeed, levels of shareholder protection were slightly stronger in the civil-law zone. Other factors, such as local political institutions, played a bigger role in shaping organisational forms and business practice

    Structure-activity relationships of the N-terminus of calcitonin gene-related peptide:key roles of alanine-5 and threonine-6 in receptor activation

    Get PDF
    Background and purpose - The N-terminus of calcitonin gene-related peptide (CGRP) is important for receptor activation, especially the disulphide-bonded ring (residues 1-7). However, the roles of individual amino acids within this region have not been examined and so the molecular determinants of agonism are unknown. This study has examined the role of residues 1, 3-6 and 8-9, excluding Cys-2 and Cys-7. Experimental approach - CGRP derivatives were substituted with either cysteine or alanine; further residues were introduced at position 6. Their affinity was measured by radioligand binding and their efficacy by measuring cAMP production in SK-N-MC cells and ß-arrestin 2 translocation in CHO-K1 cells at the CGRP receptor. Key results - Substitution of Ala-5 by cysteine reduced affinity 270-fold and reduced efficacy for production of cAMP in SK-N-MCs. Potency at ß-arrestin translocation was reduced by 9-fold. Substitution of Thr-6 by cysteine destroyed all measurable efficacy of both cAMP and ß-arrestin responses; substitution with either alanine or serine impaired potency. Substitutions at positions 1, 4, 8 and 9 resulted in approximately 10-fold reductions in potency at both responses. Similar observations were made at a second CGRP-activated receptor, the AMY1(a) receptor. Conclusions and implications - Ala-5 and Thr-6 are key determinants of agonist activity for CGRP. Ala-5 is also very important for receptor binding. Residues outside of the 1-7 ring also contribute to agonist activity

    The fast radio burst dispersion measure distribution

    Get PDF
    We compare the dispersion measure (DM) statistics of FRBs detected by the ASKAP and Parkes radio telescopes. We jointly model their DM distributions, exploiting the fact that the telescopes have different survey fluence limits but likely sample the same underlying population. After accounting for the effects of instrumental temporal and spectral resolution of each sample, we find that a fit between the modelled and observed DM distribution, using identical population parameters, provides a good fit to both distributions. Assuming a one-to-one mapping between DM and redshift for an homogeneous intergalactic medium (IGM), we determine the best-fitting parameters of the population spectral index, α^\hat{\alpha }, and the power-law index of the burst energy distribution, Îł^\hat{\gamma }, for different redshift evolutionary models. Whilst the overall best-fitting model yields α^=2.2−1.0+0.7\hat{\alpha }=2.2_{-1.0}^{+0.7} and Îł^=2.0−0.1+0.3\hat{\gamma }=2.0_{-0.1}^{+0.3}, for a strong redshift evolutionary model, when we admit the further constraint of α = 1.5 we favour the best fit Îł^=1.5±0.2\hat{\gamma }=1.5 \pm 0.2 and the case of no redshift evolution. Moreover, we find no evidence that the FRB population evolves faster than linearly with respect to the star formation rate over the DM (redshift) range for the sampled population

    Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains

    Get PDF
    In light of new data on neutron distributions from experiments with antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501 (2001)], we reexamine the role of nuclear-structure uncertainties in the interpretation of measurements of parity violation in atoms using chains of isotopes of the same element. With these new nuclear data, we find an improvement in the sensitivity of isotopic chain measurements to ``new physics'' beyond the standard model. We compare possible constraints on ``new physics'' with the most accurate to date single-isotope probe of parity violation in the Cs atom. We conclude that presently isotopic chain experiments employing atoms with nuclear charges Z < 50 may result in more accurate tests of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.

    Receptor activity-modifying proteins 2 and 3 generate adrenomedullin receptor subtypes with distinct molecular properties

    Get PDF
    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins (RAMP) 2 and 3, respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMPs 2 and 3 on the activation and conformation of the CLR subunit of AM receptors we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors and determined the effects on cAMP signalling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modelling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket, and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function
    • 

    corecore