788 research outputs found

    Optimization of photomixers and antennas for continuous-wave terahertz emission

    Get PDF
    We have studied terahertz emission from interdigitated finger photomixers coupled to planar antenna structures. Using both pulsed and continuous-wave excitation, polarization measurements reveal that the antenna design dominates the properties of the radiated output at frequencies below 0.6 THz, while the efficiency at higher frequencies is additionally dependent on the design of the photomixer fingers. We have produced terahertz maps of the device, characterizing the photomixer by measuring the generated power as a function of the excitation position. Together, these measurements have allowed us to understand better the distinct roles of the photomixer and antenna in emission at different fre

    A high efficiency input/output coupler for small silicon photonic devices

    Get PDF
    Coupling light from an optical fibre to small optical waveguides is particularly problematic in semiconductors, since the refractive index of the silica fibre is very different from that of a semiconductor waveguide. There have been several published methods of achieving such coupling, but none are sufficiently efficient whilst being robust enough for commercial applications. In this paper experimental results of our approach called a Dual-Grating Assisted Directional Coupler, are presented. The principle of coupling by this novel method has been successfully demonstrated, and a coupling efficiency of 55% measured

    The VLT-FLAMES survey of massive stars: observations in the Galactic clusters NGC3293, NGC4755 and NGC6611

    Get PDF
    We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi-Element Spectrograph (FLAMES) instrument at the Very Large Telescope (VLT). Here we present observations of 269 Galactic stars with the FLAMES-Giraffe Spectrograph (R ~ 25,000), in fields centered on the open clusters NGC 3293, NGC 4755 and NGC 6611. These data are supplemented by a further 50 targets observed with the Fibre-Fed Extended Range Optical Spectrograph (FEROS, R = 48,000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC 3293 and NGC 4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared.Comment: 26 pages, 9 figures (reduced size). Accepted for publication in A&A. A copy with full res. figures is available from http://www.ing.iac.es/~cje/flames_mw.ps.gz. Minor changes following correction of proof

    Anomalous diffusion and the first passage time problem

    Full text link
    We study the distribution of first passage time (FPT) in Levy type of anomalous diffusion. Using recently formulated fractional Fokker-Planck equation we obtain three results. (1) We derive an explicit expression for the FPT distribution in terms of Fox or H-functions when the diffusion has zero drift. (2) For the nonzero drift case we obtain an analytical expression for the Laplace transform of the FPT distribution. (3) We express the FPT distribution in terms of a power series for the case of two absorbing barriers. The known results for ordinary diffusion (Brownian motion) are obtained as special cases of our more general results.Comment: 25 pages, 4 figure

    Phase separating binary fluids under oscillatory shear

    Full text link
    We apply lattice Boltzmann methods to study the segregation of binary fluid mixtures under oscillatory shear flow in two dimensions. The algorithm allows to simulate systems whose dynamics is described by the Navier-Stokes and the convection-diffusion equations. The interplay between several time scales produces a rich and complex phenomenology. We investigate the effects of different oscillation frequencies and viscosities on the morphology of the phase separating domains. We find that at high frequencies the evolution is almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low viscosity) and diffusive (high viscosity) regimes, respectively. When the period of the applied shear flow becomes of the same order of the relaxation time TRT_R of the shear velocity profile, anisotropic effects are clearly observable. In correspondence with non-linear patterns for the velocity profiles, we find configurations where lamellar order close to the walls coexists with isotropic domains in the middle of the system. For particular values of frequency and viscosity it can also happen that the convective effects induced by the oscillations cause an interruption or a slowing of the segregation process, as found in some experiments. Finally, at very low frequencies, the morphology of domains is characterized by lamellar order everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma

    Dragon-kings: mechanisms, statistical methods and empirical evidence

    Full text link
    This introductory article presents the special Discussion and Debate volume "From black swans to dragon-kings, is there life beyond power laws?" published in Eur. Phys. J. Special Topics in May 2012. We summarize and put in perspective the contributions into three main themes: (i) mechanisms for dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii) empirical evidence in a large variety of natural and social systems. Overall, we are pleased to witness significant advances both in the introduction and clarification of underlying mechanisms and in the development of novel efficient tests that demonstrate clear evidence for the presence of dragon-kings in many systems. However, this positive view should be balanced by the fact that this remains a very delicate and difficult field, if only due to the scarcity of data as well as the extraordinary important implications with respect to hazard assessment, risk control and predictability.Comment: 20 page

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore