1,976 research outputs found

    Habitat fragmentation causes rapid genetic differentiation and homogenization in natural plant populations – A case study in Leymus chinensis

    Get PDF
    The effects of habitat fragmentations on the forage grass Leymus thinness (Trin.) Tzvel, which has high genetic diversity in northeast China were investigated. Four natural populations of the same ecotype (Grey-green leaf, GGL), namely, BT, ZL, CL and CC (named after location) were collected from different abiotic growing conditions. The CC population has become isolated in a park inside a city by tall buildings though geologically close to CL. Amplified fragment length polymorphism (AFLP) selected primer combinations were highly efficient in revealing the inter-clonal and inter-populational genetic variation in this species. The genetic diversity indices were higher in BT (H = 0.2305) and ZL (0.2467) populations and the lowest in CC (0.1674) population. Cluster analysis showed that the CC population was becoming isolated from the rest with the least gene flow from BT (1.51) as compared from BT to ZL (2.24). Lowest polymorphism was observed in CC (52.31%) as compared to CL (57.69%), BT (70.00%) and ZL (70.38%); this showed a tendency towards homogenization probably due to increased selfing, and due to reduced gene flow apparently caused by city buildings. These results were supported by multiple statistical analyses including Mantel’s test, PCOORDA and AMOVA. Genetic enrichment and epigenetic variation studies can be included in habitat fragmentation analysis and its implications in inducing homogenization and susceptibility in natural plant populations

    Drinfeld twist and symmetric Bethe vectors of the open XYZ chain with non-diagonal boundary terms

    Full text link
    With the help of the Drinfeld twist or factorizing F-matrix for the eight-vertex solid-on-solid (SOS) model, we find that in the F-basis provided by the twist the two sets of pseudo-particle creation operators simultaneously take completely symmetric and polarization free form. This allows us to obtain the explicit and completely symmetric expressions of the two sets of Bethe states of the model.Comment: Latex file, 25 page

    The effect of surface and Coulomb interaction on the liquid-gas phase transition of finite nuclei

    Get PDF
    By means of the Furnstahl, Serot and Tang's model, the effects of surface tension and Coulomb interaction on the liquid-gas phase transition for finite nuclei are investigated. A limit pressure p-lim above which the liquid-gas phase transition cannot take place has been found. It is found that comparing to the Coulomb interaction, the contribution of surface tension is dominate in low temperature regions. The binodal surface is also addressed.Comment: LaTex, 8 pages with 6 fig

    CARM amplifier theory and simulation

    Get PDF

    Molecular evidence of the haploid origin in wheat (Triticum aestivum L.) with Aegilops kotschyi cytoplasm and whole genome expression profiling after haploidization

    Get PDF
    Aegiolops kotschyi cytoplasmic male sterile system often results in part of haploid plants in wheat (Triticum aestivum L.). To elucidate the origin of haploid, 235 wheat microsatellite (SSR) primers were randomly selected and screened for polymorphism between haploid (2n = 3x = 21 ABD) and its parents, male-sterile line YM21 (2n = 6x = 42 AABBDD) and male fertile restorer YM2 (2n = 6x = 42 AABBDD). About 200 SSR markers yielded clear bands from denatured PAGE, of which 180 markers have identifiable amplification patterns, and 20 markers (around 8%) resulted in different amplification products between the haploid and the restorer, YM2. There were no SSR markers that were found to be distinguishable between the haploid and the male sterile line YM21. In addition, different distribution of HMW-GS between endosperm and seedlings from the same seeds further confirmed that the haploid genomes were inherited from the maternal parent. After haploidization, 1.7% and 0.91% of total sites were up- and down-regulated exceeding twofold in the shoot and the root of haploid, respectively, and most of the differentially expressed loci were up/down-regulated about twofold. Out of the sensitive loci in haploid, 94 loci in the shoot, 72 loci in the root can be classified into three functional subdivisions: biological process, cellular component and molecular function, respectively

    Exact solution of the An−1(1)A^{(1)}_{n-1} trigonometric vertex model with non-diagonal open boundaries

    Full text link
    The An−1(1)A^{(1)}_{n-1} trigonometric vertex model with {\it generic non-diagonal} boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.Comment: Latex file, 25 pages; V2: minor typos corrected, the version appears in JHE

    Effects of Allelic Variation in Glutenin Subunits and Gliadins on Baking-Quality in Near-isogenic Lines of Common Wheat cv. Longmai 19

    Get PDF
    Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m
    • …
    corecore