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ABSTRACT

The theory and simulation of cyclotron autoresonance maser (CARM) amplifiers are
presented, including studies of amplifier phase stability, multimode phenomena, and sus-
ceptibility to absolute instabilities. Recent results include particle-in-cell simulations of
the onset of absolute instabilities and numerical modeling of multimode effects. Phase
stability studies indicate that the output phase of CARM amplifiers may be relatively
insensitive to fluctuations in beam energy, pitch, and current, for optimized designs;
simulations show a phase sensitivity of ~ 2* per percent beam energy variation. An
experimental design for a long-pulse 17 GHz CARM amplifier is presented.

1



1. INTRODUCTION

Future linear colliders will require high frequency rf sources together with high gradi-
ent accelerating structures in order to be economically feasible. The cyclotron autores-
onance maser (CARM) is a promising source for application as an rf accelerator driver,
and a program to develop CARM amplifiers at 17 GHz for this application is presently
underway at the MIT Plasma Fusion Center [1].

Experiments at a 17 GHz will be performed using two different technologies for gener-
ation of the high voltage electron beam required by the CARM. A long-pulse (2.5 ps, 1 ps
flattop), 700 kV pulse modulator and a short-pulse (50 ns), 1.2 MeV induction accelerator
will be employed for generation of the electron beam. This will allow a comparison of
two alternate methods for producing the ~ 50 ns rf pulses required by the high gradient
structures. A long-pulse, modulator-driven CARM together with pulse compression tech-
niques, or an induction-linac-driven CARM are both capable in principle of delivering
the required rf pulses to the structure.

In this paper, several theoretical issues are discussed, including the behavior of the
CARM amplifier with the presence of multiple modes, particle-in-cell simulations of am-
plifier stability, and an analysis of phase stability in the CARM amplifier. Finally, an
experimental design for a long-pulse CARM amplifier is presented.

2. MULTIMODE CARM AMPLIFIER THEORY

Many planned CARM amplifier experiments will operate in overmoded waveguide.
Until now, CARM amplifiers have been analyzed under a priori assumption that only
a single waveguide mode interacts with the electron beam. The goal of this section
to develop a formalism which can treat overmoded systems with an arbitrary number
of transverse-electric (TE) and transverse-magnetic (TM) modes. The present analysis
consists of two approaches: (kinetic) linear theory and three-dimensional, self-consistent
computer simulations. For simplicity, we present here the analysis of TE1j modes cou-

pling to an azimuthally symmetric electron beam at the fundamental cyclotron frequency,
while maintaining the general features of multimode CARM interactions.

It can be shown that a complete set of nonlinear equations describing an over-
moded CARM amplifier with multiple TEIn modes can be expressed in the dimensionless
form [2,3]

=- - 1 X.(rL,)AcosPn , (1)
d! pZ

dp A 1 d6 dAn s
- -Xn(rA,r,) -+-) A cosn+- si , (2)

di fix n n di IdI

2



d4,' 1 + + + V

di TO 6 AA.
d 2 1+ -A- W,(rL, r,) V 2- + -')A., sini~ dA p- cs1  (3)

PP.,Pi #ii, d+PzC~~i

+ Tn )An (i) exp { i
_ 2in + \n (id I

=ig X (rL, r,) e-ln- expf i -z+ n(i) , (4)

where the normalized coupling constant gn is defined by

= 4(026 - 1) .
(5)

- 1)[J1 (Vn)] 2 \A (5)

Equations (1)-(3) describe the dynamics of each individual particle, and Eq. (4) describes

the slowly varying wave amplitude An(i) and phase shift 6(i) for the TE1j mode. In
Eqs. (1)-(5), i = wz/c is the normalized interaction length; w = 27rf is the angular

frequency of the input signal; n = /w = eBo/mct is the normalized nonrelativistic

cyclotron frequency; P. = p,/mc = -yo,, Pj = pj/mc = -yfLj, and -y = (1+P+3I)1/2 are,
respectively, the normalized axial and transverse momentum components, and relativistic

mass factor of the beam electron; Ib is the beam current; IA = mc3/e 2 17 kA is the

Alfv~n current; Xn(rL,r,) = Jo(knrg)JI(knrL) and Wn(rL,rg) = Jo(knrg)JI(knrL)/knrL
are geometric factors; Jo(x) is the zeroth-order Bessel function; JI(x) = dJ1 (x)/dx is the

derivative of the first-order Bessel function; vn is the nth zero of Jj(x); kn = vl'/r, is the

transverse wavenumber associated with the T E1 , mode; 0, = w/ck,, =k -
is the normalized phase velocity of the vacuum TEIn waveguide mode; rTL = p±/mil, is
the electron Larmor radius; r, is the electron guiding-center radius which is assumed

to be constant. In Eq. (4), < ... > denotes the ensemble average over the particle

distribution, and typically more than 1024 particles are used in the simulations. The rf

power flow over the cross section of the waveguide for the TEin mode, Pn(z), is related

to the normalized wave amplitude An by the expression

Pn(i)= - + - ) (6)
2gn e2  IA di n

where m 2 c5/e 2 c 8.7 GW.
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By performing the Laplace transform of the linearized Maxwell-Vlasov equations, a

dispersion relation and amplitude equations can be derived for the cyclotron resonance

maser interaction with multiple TEIn modes coupling to a cold, thin (knr, < 1), az-

imuthally symmetric electron beam. To leading order in c2k'/(w - 1c/y - kv,)2 , it

can be shown that the Laplace transform of the equations for the amplitudes En(z) ~
An(z) exp[ik2 ,z + 6b(z)] can be expressed approximately in the matrix form [3]

2 N ,(W2 + c 2S2 )
52 _ k2 + - E( + nn kn a'

n(2 + , (L - l/_y + i_ n)

= sEn(O) + E W ,kIvt Ej,(0) (7)
,= (w - £c/i + i~s)2

where use has been made of initial condition dEn(O)/dz = 0, and the dimensionless

coupling constants Inn, are defined by

40 2 I1 Xn(rL , r,)X.,(rL , r,)
Inn' _L ,(8)

(J)[(V2 - 1)(V2, - 1)]1/2j,(Vn)j,(Vn,).()

In Eqs. (7) and (8), s = ik, is the argument in the Laplace transform; 3, = vIc

and #_ = v./c are, respectively, the normalized axial and transverse velocities of the

equilibrium beam electrons; and ckN is the largest cut-off frequency below the operating

frequency w. Therefore, the amplitudes and dispersion relation can be obtained by solving

Eq. (7) and performing the inverse Laplace transform of En(s).

For two coupled modes, TE1, and TEIn,, it is readily shown from Eq. (7) that the

dispersion relation is

k + kn - (kZ + kn,- k,

=[Innk (k,2 + k + -n+ + k - ](w2 -c2k) . (9)

When the two modes are well separated, and Ennki (k + k2, - w2 /c 2) > ,(k2 +

k - w 2 /c2), corresponding to the electron beam mode, w = kvz + Oc/y, in resonance

with the TE1 n mode, w = c(kj + k2) 1/2, the coupled-mode dispersion relation in Eq. (9)

becomes the usual single-mode dispersion relation [2,4]

kZ+ k2_),esiw 2 (10)
S c2 (w - Oc7- k..v)2
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for the TEI, mode.

Typical results from the computer simulations and kinetic theory are summarized
in Figs. 1-3. Figure 1 shows the dependence of rf power in the TE11 and TE12 modes
on the interaction length, for (a) single-mode CARM interactions and (b) the CARM
interaction with the two modes coupling to the beam. The system parameters in Fig. 1
correspond to the TE11 mode in resonance, and the TE12 mode off resonance, with
the electron beam. The solid curves are the simulation results obtained by integrating
numerically Eqs. (1)-(4), and the dashed curves are obtained analytically from Eq. (7).
The inclusion of the coupling of the TE11 and TE12 modes results in instability for the
TE12 mode in Fig. 1(b), while the single-mode theory predicts complete stability for the
TE12 mode in Fig. 1(a). In fact, in Fig. 1(b), the TE12 mode grows parasitically with
the dominant unstable TE11 mode and the two coupled modes have the same spatial
growth rate -ImAk, > 0, corresponding to the most unstable solution of the dispersion
relation in Eq. (9). Because the TE11 mode is in resonance with the beam mode and the
TE12 mode is detuned from the corresponding resonance, the TE12 mode suffers greater
launching losses than the TE11 mode in the interaction. This is one of the general features
of the multimode CARM interaction, namely, all of the coupled modes have the same
small-signal growth rate but suffer different launching losses depending upon detuning
characteristics.

Another interesting feature of the multimode CARM interaction is that the rf power
distribution among the coupled modes at saturation is insensitive to the power distribu-
tion at z = 0 but is sensitive to detuning. Figure 2 shows the results of the simulations
for the coupling of the TE11 and TE12 modes with two different distributions of input rf
power. Here, only the TE12 mode is plotted because the TE11 mode remains virtually
unchanged for the two cases. Figure 3 depicts the detuning characteristics of saturation
rf power distribution over four coupled TEln modes (n = 1,2,3, 4), as obtained from the
simulations with an input power of 100 W per mode. By increasing the axial magnetic
field B0 in Fig. 3, the beam mode is tuned through the resonances with the TE11 , TE1 2 ,

TE13 , and TE14 modes at B0 = 3.74, 4.29, 5.33, and 6.98 kG, respectively. The fractional
rf power for a given mode reaches a maximum at its resonant magnetic field, while the
rf power decreases rapidly for off-resonance modes. In the transition from one resonance
to another, however, two adjacent competing modes close to the resonance can have
comparable rf power levels at saturation.

3. SIMULATIONS OF CARM ABSOLUTE INSTABILITY

Most designs of CARM amplifiers, including our design in Sec. 5, rely on linear theory
to determine parameter regimes where the absolute instability [5,6] is below threshold.
The theoretcial models used in the calculation of the threshold current assume that
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there is no input signal at the drive frequency and that the system in infinite in the axial
direction. Both these conditions are, obviously, violated in any amplifier experiment. In
order to investigate the possibility of suppressing the absolute instability by injecting a
large input signal, the MAGIC particle-in-cell code (7] is being used simulate a CARM
amplifier. Parameters have been choosen so that, in the absence of an injected signal, the
absolute instability will experience strong growth. At present, the cylindrically symmetric
version of the program is being employed, limiting this preliminary analysis to TEon
waveguide modes.

The growth of the TEO, mode downshifted convective instability and absolute in-
stability from numerical noise (with no driver) is illustrated in Figs. 4(a) and 4(b).
System parameters are waveguide radius = 1.5 cm, hollow beam radius = 0.75 cm,
gamma = 2.967, beam current = 50A, applied longitudinal magnetic field = 13.75 kG,
and 01 = 1.0. Figure 4(a) shows E9 vs. z at t = 3.6 nsec. The long-wavelength
oscillation of Eq corresponds to the convective downshifted guide wavelength of 28 cm
predicted by linear theory. Figure 4(b) shows the same field at t = 8.1 nsec. The long
wavelength is now consistent with the absolute instability guide wavelength of 18cm pre-
dicted by linear theory. Apparently, the growth of the downshifted convective instability
has been suppressed by that of the slower growing absolute instability.

To illustrate the effects of an input signal, we apply a driver of 25 kW to a highly
unstable system with the same waveguide dimensions and beam energy as in Fig. 4, but
with 0L/011 = 1.6, beam current = 500 A, and an applied longitudinal magnetic field
of 19.43 kG. The frequency of the driver is 34.272 GHz (equal to that of the upshifted
intersection of the uncoupled beam and TEO, waveguide dispersion relations). At early
times growth is predominately in the upshifted TEO, mode. It is evident from Fig. 5,
where E9 vs. z is plotted at a time of t = 1.4 nsec, that an instability of a longer
wavelength, equal to that of either the TEO, downshifted (A. = 3.9 cm) or absolute
instabilities (Ag = 3.8 cm), has developed in the region z < 0.16 m. If the power of the
driver is increased to 2.5 MW, then, as is evident from Fig. 6, no significant longer-
wavelength growth has appeared within 3.6 nsec. Further theoretical and numerical
studies will be needed to quantitatively understand this phenomena and to determine if
it is advantageous for CARM amplifiers to operate in this regime.

4. CARM AMPLIFIER PHASE STABILITY

An analysis of the phase stability of CARM amplifiers to perturbations in electron
beam parameters has been performed [8]. For a high peak power rf source to be attractive
for use in powering the next generation linear collider, the source must produce rf with a
stable, non-varying phase. Both the phase stability during the single 50 ns - 1 As rf pulse,
and the shot-to-shot phase stability must meet certain requirements which depend on the
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particular design of the linear collider. Failure of the source to deliver phase stable rf
output usually results in an unacceptable variation of the energy of the electron beam in
the linear collider. The rf phase in a high gain amplifier will be sensitive to the variations
of the electron beam energy and current during the pulse. The typical phase stability of
conventional klystrons is approximately 8* per percent beam energy variation.

In the cyclotron autoresonance maser, the question of phase stability is complicated
by the fact that the beam transverse momentum pi. (or, correspondingly, the transverse
velocity fj_) is independently variable from the beam energy. For a free-electron laser, the

beam transverse motion is set by the wiggler, such that O. = a./ y. The phase stability
of the CARM amplifier must therefore be investigated with respect to potential variation
in at least three beam parameters, energy 7, transverse momentum pj, and current I.
These parameters are interrelated. For example, the current is correlated to the voltage
fluctuations for space-charge limited emission from the cathode, and the beam pi will be
correlated with fluctuations in the beam energy through the wiggler which is employed
to produce the pi (assuming that a wiggler is used to spin up the beam).

Phase stability studies for several CARM amplifier designs have been carried out. For
the parameters outlined in Table 1, the net rf phase variation with fluctuations in both
beam voltage and .# is shown in Fig. 7 for energy E = mC2 (t - 1) and 13 L, when Y
and O_ are assumed to be independently variable parameters. The contours are straight
lines. In these figures, the phase shift between the amplifier input phase and the amplifier
output phase has been taken to be zero for the mean values of the design parameters.

In a real CARM amplifier which utilizes a Pierce-Wiggler for the helical beam for-
mation, the wiggler produces a correlation between the beam 0j. and the instantaneous
beam energy in the wiggler. This correlation depends on how close the device is op-
erating to resonance between the guide field and the wiggler field, exact resonance at
the entrance of the wiggler occurring when -y Ok .c = eBo/m. By a careful choice of the
wiggler and guide field parameters, this wiggler induced correlation between fluctuations
in y and fluctuations in # can be chosen in such a way as to significantly reduce the rf
phase fluctuation for variations in the electron beam energy. An example follows. For
the parameters in Table 1, for a wiggler designed with A, = 15 cm, Bo, = 1.964kG, a
wiggler field strength of B,, = 35.8 G, and a length of L, = 45 cm, the wiggler induced
correlation between changes in beam voltage and the resulting change in O1 is shown in
Fig. 7 as the arc intersecting the mean value zero phase shift point of the contour plot. As
is apparent from this figure, by careful choice of the wiggler induced correlation between
- and #., the rf phase stability of the CARM amplifier can be greatly enhanced. Fig. 8
presents a summary of the phase variability for independent voltage and O.# variation,
and for beam voltage when the beam is intentionally correlated (corrected) by proper
design of the wiggler system. Uncorrellated variations are ±8* per percent energy vari-
ation, ±15* per percent variation in 0j, but only ~ ±2* per percent variation in beam
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energy, over a narrow range of energy change (- 2.5%), for the properly designed cor-

relation between & and y. For large variations in the beam energy, the wiggler induced
correlation should result in the expected large variations in amplifier output phase; the
wiggler induced correlation will only correct the phase for small changes about the design
energy.

This technique for local reduction of the CARM amplifier phase sensitivity to beam

energy variations could significantly improve the prospects for a high-gain CARM am-

plifier with a high degree of phase stability.

5. EXPERIMENTAL DESIGN

Experimental designs for both a long-pulse and short-pulse CARM amplifier have

been carried out. The long-pulse experiment will utilize a 0.27 pP, 700 kV electron gun,
and the MIT 2.5ps (1 ps flat-top), 700 kV pulse modulator. For operation with pulse

lengths of 1 ps, the design of the CARM amplifier must optimize the device efficiency
within the constraints imposed by the requirement that the amplifier not be susceptible
to absolute instabilities [5,6]. Because the 1 ps pulse length is significantly longer than

the typical e-folding times of the absolute instability, the design parameters of the device

must be well within the calculated stability limits.

The beam pitch angle a =_ po which corresponds to 50% and 80% of the critical

coupling for instability is shown in Fig. 9 as a function of the normalized detuning from

resonance A for three different beam voltages. This detuning is defined by

2 (1 - 01jo/,30) 01 :)2 _3; 2

The total efficiency as a function of detuning, with beam a = 6,o determined as a

function of A from Fig. 9, is shown in Fig. 10 for the case of a cold beam. The drive

power was Pd = 1 kW, and the guide radius r. = 1.11 cm for these simulations. Results

were obtained from a code which integrates a single mode version of Eqns. (1)-(4). The

device efficiency is seen to increase markedly for magnetic fields below resonance; this is

primarily because the allowable beam Opo increases substantially as the magnetic field is
lowered. For fixed Opo the device efficiency does not vary with field as dramatically as in
Fig. 10. Amplifier efficiency enhancement has been shown possible with magnetic field
tapering [9,10]. The design parameters for a choice of 550 kV as the beam voltage are

shown in Table 2.

6. CONCLUSIONS

CARM theory and simulation have been used to study amplifier performance in over-
moded systems. A multimode theory, which can predict the transverse mode excitation,

8



including launching losses, is in good agreement with multiparticle simulations. It was

shown analytically, and confirmed in the simulations, that all of the coupled modes grow
at the same growth rate as the dominant unstable mode, but suffer different launching
losses, which depend upon detuning. The saturated rf power in each mode was found to

be insensitive to input rf power distribution, but sensitive to detuning.

The absolute instability can be suppressed with sufficiently large input rf power for
beam parameters which would otherwise be absolutely unstable. Further studies of this

phenomena are required to determine if high gain and suppression of the absolute insta-

bilty can be achieved simultaneously.

The sensitivity of the CARM induced phase shift in the rf signal to variations in the
beam volatage and O.L has been examined in detail. When a Pierce wiggler is used to
spin-up the beam, the correlations between errors in energy and perpindicular velocity
can be made to cancel (to first order) near the operating point. For the design presented
in Sec. 4, sensitivities are, assuming no correlations between energy and 6.L, ±8* per

percent energy variation and ±15* per percent variation in #1., but only ±2* per
percent variation in beam energy, over a narrow range of energy change (~ ±2.5%),
when the errors are correlated by the Pierce wiggler. Experimental design has been
presented, and the experiments are underway.
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Table 1: Average Beam Parameters for Phase Stability Study

550 kV CARM Amplifier Design

Table 2: Long-Pulse CARM Amplifier Design Parameters

11

Parameter Value
Energy, -y mc 2  1 MeV

Current, I 3.7 kA
9PO= P.IPIl 0.6

Mode TE11
Frequency 17.136 GHz

r, 1.4 cm
Detuning, A 0

Parameter Design Value
Frequency 17.136 GHz
Mode TEI1
Beam Energy 550 keV
Beam Current 110 A
rw, 1.111 cm

34 1.127
OPO 0.59
BZ0  3.91 kG
Detuning (A) 0.35
P;. 1 kW
Pet 18.2 MW
77T, (oap = 0) 30 %
Z.at 0.83 m
Saturated Gain 43 dB
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Figure 1: The rf power in the TE11 and TE12 modes if plotted as a function of the inter-
action length z for (a) single-mode CARM interactions and (b) the CARM interaction
with the two coupled modes. Note in (b) that the TE12 mode grows parasitically with
the dominant unstable TE11 mode at the same spatial growth rate due to mode coupling,
despite the differences in launching losses.
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nonlinear evolution of rf power for the TE12 mode obtained from the simulations with
two input rf power distributions: (a) Po(TE11 ) = 1.0 kW and PO(TE12 ) = 1.0 kW, and
(b) Po(TE11 ) = 1.0 kW and PO(TE12 ) = 1.0 W, while the two dashed curves are the
corresponding analytical results from Eq. (7).
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perveance.
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Figure 10: Plot of effi; detuning for different beam voltages and for OPO values

corresponding to 504/ critical coupling.
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