9 research outputs found

    The interior solution of axially symmetric, stationary and rigidly rotating dust configurations

    Full text link
    It is shown that the interior solution of axially symmetric, stationary and rigidly rotating dust configurations is completely determined by the mass density along the axis of rotation. The particularly interesting case of a mass density, which is cylindrical symmetric in the interior of the dust configuration, is presented. Among other things, this proves the non-existence of homogeneous dust configurations.Comment: minor corrections to the published version, 10 page

    Stationary Cylindrical Anisotropic Fluid

    Get PDF
    We present the whole set of equations with regularity and matching conditions required for the description of physically meaningful stationary cylindrically symmmetric distributions of matter, smoothly matched to Lewis vacuum spacetime. A specific example is given. The electric and magnetic parts of the Weyl tensor are calculated, and it is shown that purely electric solutions are necessarily static. Then, it is shown that no conformally flat stationary cylindrical fluid exits, satisfying regularity and matching conditions.Comment: 17 pages Latex. To appear in Gen.Rel.Gra

    Unwrapping Closed Timelike Curves

    Full text link
    Closed timelike curves (CTCs) appear in many solutions of the Einstein equation, even with reasonable matter sources. These solutions appear to violate causality and so are considered problematic. Since CTCs reflect the global properties of a spacetime, one can attempt to change its topology, without changing its geometry, in such a way that the former CTCs are no longer closed in the new spacetime. This procedure is informally known as unwrapping. However, changes in global identifications tend to lead to local effects, and unwrapping is no exception, as it introduces a special kind of singularity, called quasi-regular. This "unwrapping" singularity is similar to the string singularities. We give two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs, the Gott spacetime and the Godel universe. We show that the unwrapped Gott spacetime, while singular, is at least devoid of CTCs. In contrast, the unwrapped Godel spacetime still contains CTCs through every point. A "multiple unwrapping" procedure is devised to remove the remaining circular CTCs. We conclude that, based on the two spacetimes we investigated, CTCs appearing in the solutions of the Einstein equation are not simply a mathematical artifact of coordinate identifications, but are indeed a necessary consequence of General Relativity, provided only that we demand these solutions do not possess naked quasi-regular singularities.Comment: 29 pages, 9 figure

    From black strings to black holes: nuttier and squashed AdS5_5 solutions

    Full text link
    We construct new solutions of the Einstein equations with negative cosmological constant in five spacetime dimensions. They smoothly emerge as deformations of the known AdS5_5 black strings. The first type of configurations can be viewed as the d=4d=4 Taub-NUT-AdS solutions uplifted to five dimensions, in the presence of a negative cosmological constant. We argue that these solutions provide the gravity dual for a N=4{\cal N}=4 super-Yang-Mills theory formulated in a d=4d=4 homogeneous G\"odel-type spacetime background. A different deformation of the AdS5_5 black strings leads to squashed AdS black holes and their topological generalizations. In this case, the conformal infinity is the product of time and a circle-fibration over a base space that is a two-dimensional Einstein space.Comment: 19 pages, 7 figure

    Wormholes and Ringholes in a Dark-Energy Universe

    Get PDF
    The effects that the present accelerating expansion of the universe has on the size and shape of Lorentzian wormholes and ringholes are considered. It is shown that, quite similarly to how it occurs for inflating wormholes, relative to the initial embedding-space coordinate system, whereas the shape of the considered holes is always preserved with time, their size is driven by the expansion to increase by a factor which is proportional to the scale factor of the universe. In the case that dark energy is phantom energy, which is not excluded by present constraints on the dark-energy equation of state, that size increase with time becomes quite more remarkable, and a rather speculative scenario is here presented where the big rip can be circumvented by future advanced civilizations by utilizing sufficiently grown up wormholes and ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.
    corecore