309 research outputs found
Quantum measurement as driven phase transition: An exactly solvable model
A model of quantum measurement is proposed, which aims to describe
statistical mechanical aspects of this phenomenon, starting from a purely
Hamiltonian formulation. The macroscopic measurement apparatus is modeled as an
ideal Bose gas, the order parameter of which, that is, the amplitude of the
condensate, is the pointer variable. It is shown that properties of
irreversibility and ergodicity breaking, which are inherent in the model
apparatus, ensure the appearance of definite results of the measurement, and
provide a dynamical realization of wave-function reduction or collapse. The
measurement process takes place in two steps: First, the reduction of the state
of the tested system occurs over a time of order , where
is the temperature of the apparatus, and is the number of its degrees of
freedom. This decoherence process is governed by the apparatus-system
interaction. During the second step classical correlations are established
between the apparatus and the tested system over the much longer time-scale of
equilibration of the apparatus. The influence of the parameters of the model on
non-ideality of the measurement is discussed. Schr\"{o}dinger kittens, EPR
setups and information transfer are analyzed.Comment: 35 pages revte
Entropy of Lovelock Black Holes
A general formula for the entropy of stationary black holes in Lovelock
gravity theories is obtained by integrating the first law of black hole
mechanics, which is derived by Hamiltonian methods. The entropy is not simply
one quarter of the surface area of the horizon, but also includes a sum of
intrinsic curvature invariants integrated over a cross section of the horizon.Comment: 15 pages, plain Latex, NSF-ITP-93-4
Decoherence and wave function collapse
The possibility of consistency between the basic quantum principles of
quantum mechanics and wave function collapse is reexamined. A specific
interpretation of environment is proposed for this aim and applied to
decoherence. When the organization of a measuring apparatus is taken into
account, this approach leads also to an interpretation of wave function
collapse, which would result in principle from the same interactions with
environment as decoherence. This proposal is shown consistent with the
non-separable character of quantum mechanics
Eutectic colony formation: A phase field study
Eutectic two-phase cells, also known as eutectic colonies, are commonly
observed during the solidification of ternary alloys when the composition is
close to a binary eutectic valley. In analogy with the solidification cells
formed in dilute binary alloys, colony formation is triggered by a
morphological instability of a macroscopically planar eutectic solidification
front due to the rejection by both solid phases of a ternary impurity that
diffuses in the liquid. Here we develop a phase-field model of a binary
eutectic with a dilute ternary impurity and we investigate by dynamical
simulations both the initial linear regime of this instability, and the
subsequent highly nonlinear evolution of the interface that leads to fully
developed two-phase cells with a spacing much larger than the lamellar spacing.
We find a good overall agreement with our recent linear stability analysis [M.
Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a
destabilization of the front by long-wavelength modes that may be stationary or
oscillatory. A fine comparison, however, reveals that the assumption commonly
attributed to Cahn that lamella grow perpendicular to the envelope of the
solidification front is weakly violated in the phase-field simulations. We show
that, even though weak, this violation has an important quantitative effect on
the stability properties of the eutectic front. We also investigate the
dynamics of fully developed colonies and find that the large-scale envelope of
the composite eutectic front does not converge to a steady state, but exhibits
cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.
Interference in a Spherical Phase-Space and Asymptotic-Behavior of the Rotation Matrices
We extend the interference in the phase-space algorithm of Wheeler and Schleich [W. P. Schleich and J. A. Wheeler, Nature 326, 574 (1987)] to the case of a compact, spherical topology in order to discuss the large j limits of the angular momentum marginal probability distributions. These distributions are given in terms of the standard rotation matrices. It is shown that the asymptotic distributions are given very simply by areas of overlap in the classical spherical phase-space parametrized by the components of angular momentum. The results indicate the very general validity of the interference in phase-space concept for computing semiclassical limits in quantum mechanics
Rational design of biosafe crop resistance to a range of nematodes using RNA interference
Double stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal Alpha Subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison to Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3 fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9 fold and 4 fold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7 and 2 fold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9 and 5.6 fold. There was no detectable RNAi effect on non-target nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of non-protein defences to provide broad resistance to pests and pathogens of crops
The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory
We give a new theoretical basis for examination of the presence of the Kerr
black hole (KBH) or the Kerr naked singularity (KNS) in the central engine of
different astrophysical objects around which astrophysical jets are typically
formed: X-ray binary systems, gamma ray bursts (GRBs), active galactic nuclei
(AGN), etc. Our method is based on the study of the exact solutions of the
Teukolsky master equation for electromagnetic perturbations of the Kerr metric.
By imposing original boundary conditions on the solutions so that they describe
a collimated electromagnetic outflow, we obtain the spectra of possible {\em
primary jets} of radiation, introduced here for the first time. The theoretical
spectra of primary electromagnetic jets are calculated numerically. Our main
result is a detailed description of the qualitative change of the behavior of
primary electromagnetic jet frequencies under the transition from the KBH to
the KNS, considered here as a bifurcation of the Kerr metric. We show that
quite surprisingly the novel spectra describe linearly stable primary
electromagnetic jets from both the KBH and the KNS. Numerical investigation of
the dependence of these primary jet spectra on the rotation of the Kerr metric
is presented and discussed.Comment: 18 pages, 35 figures, LaTeX file. Final version. Accepted for
publication in Astrophysics and Space Science. Amendments. Typos corrected.
Novel notion -"primary jet" is introduced. New references and comments adde
Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)
The dissociative adsorption of hydrogen on Pd(100) has been studied by ab
initio quantum dynamics and ab initio molecular dynamics calculations. Treating
all hydrogen degrees of freedom as dynamical coordinates implies a high
dimensionality and requires statistical averages over thousands of
trajectories. An efficient and accurate treatment of such extensive statistics
is achieved in two steps: In a first step we evaluate the ab initio potential
energy surface (PES) and determine an analytical representation. Then, in an
independent second step dynamical calculations are performed on the analytical
representation of the PES. Thus the dissociation dynamics is investigated
without any crucial assumption except for the Born-Oppenheimer approximation
which is anyhow employed when density-functional theory calculations are
performed. The ab initio molecular dynamics is compared to detailed quantum
dynamical calculations on exactly the same ab initio PES. The occurence of
quantum oscillations in the sticking probability as a function of kinetic
energy is addressed. They turn out to be very sensitive to the symmetry of the
initial conditions. At low kinetic energies sticking is dominated by the
steering effect which is illustrated using classical trajectories. The steering
effects depends on the kinetic energy, but not on the mass of the molecules.
Zero-point effects lead to strong differences between quantum and classical
calculations of the sticking probability. The dependence of the sticking
probability on the angle of incidence is analysed; it is found to be in good
agreement with experimental data. The results show that the determination of
the potential energy surface combined with high-dimensional dynamical
calculations, in which all relevant degrees of freedon are taken into account,
leads to a detailed understanding of the dissociation dynamics of hydrogen at a
transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
Measurement-based quantum foundations
I show that quantum theory is the only probabilistic framework that permits
arbitrary processes to be emulated by sequences of local measurements. This
supports the view that, contrary to conventional wisdom, measurement should not
be regarded as a complex phenomenon in need of a dynamical explanation but
rather as a primitive -- and perhaps the only primitive -- operation of the
theory.Comment: 8 pages, version to appear in Found. Phy
- âŠ