1,712 research outputs found

    Form factors of heavy-light systems in point-form relativistic quantum mechanics: the Isgur-Wise function

    Full text link
    We investigate electromagnetic and weak form factors of heavy-light mesons in the context of point-form relativistic quantum mechanics. To this aim we treat the physical processes from which such electroweak form factors are extracted by means of a coupled channel approach which accounts for the dynamics of the intermediate gauge bosons. It is shown that heavy-quark symmetry is respected by this formulation. A simple analytical expression is obtained for the Isgur-Wise function in the heavy-quark limit. Breaking of heavy-quark symmetry due to realistic values of the heavy-quark mass are studied numerically.Comment: Presented at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 30 August - 3 September 201

    Environment-Induced Decoherence and the Transition From Quantum to Classical

    Get PDF
    We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the ``standard lore'' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law -it is shown- can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the 72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199

    Effects of Different Substrates on the Growth and Nutritional Composition of Pleurotus ostreatus: A Review

    Get PDF
    Mushrooms are a popular food source as they are highly nutritious and flavorful with a high content of proteins, vitamins, and minerals. Mushrooms could be an alternative solution to the world’s food crisis as they are inexpensive to grow on different types of substrates including waste materials. Pleurotus ostreatus, frequently known as oyster mushrooms, are the second most cultivated mushroom in the world. This species is known for its high protein content and easy cultivation. Oyster mushrooms have the potential to produce protein-rich biomass when grown on various substrates. There is a need to identify substrates that are cost-effective for the commercial production of nutritious oyster mushrooms as the substrates used currently are either costly or inadequate to produce oyster mushrooms in the required quantity or quality. Thus, the effects of 6 different lignocellulosic substrates on the growth and nutritional composition of P. ostreatus were reviewed and analyzed in this article. The substrates included in this review were wheat straw, sugarcane bagasse, corncob, softwood sawdust, hardwood sawdust, and general sawdust. Based on the analyzed data, sugarcane bagasse was concluded as the most suitable substrate to grow P. ostreatus. These substrates contain a high amount of nutrients and are also likely to produce a significantly high yield of oyster mushrooms in addition to enhancing the nutritional quality of the mushroom. However, these findings must be evaluated and confirmed through further research in this field

    The electric dipole form factor of the nucleon

    Full text link
    The electric dipole form factor of the nucleon stemming from the QCD θˉ\bar{\theta} term is calculated in chiral perturbation theory in leading order. To this order, the form factor originates from the pion cloud. Its momentum-dependence is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation--appearing, in particular, in the radius of the form factor--is the pion mass.Comment: 8 pages, 2 figure

    Vacuum polarization calculations for hydrogenlike and alkalilike ions

    Full text link
    Complete vacuum polarization calculations incorporating finite nuclear size are presented for hydrogenic ions with principal quantum numbers n=1-5. Lithiumlike, sodiumlike, and copperlike ions are also treated starting with Kohn-Sham potentials, and including first-order screening corrections. In both cases dominant Uehling terms are calculated with high accuracy, and smaller Wichmann- Kroll terms are obtained using numerical electron Green's functions.Comment: 23 pages, 1 figur

    Form Factors of Few-Body Systems: Point Form Versus Front Form

    Full text link
    We present a relativistic point-form approach for the calculation of electroweak form factors of few-body bound states that leads to results which resemble those obtained within the covariant light-front formalism of Carbonell et al. Our starting points are the physical processes in which such form factors are measured, i.e. electron scattering off the bound state, or the semileptonic weak decay of the bound state. These processes are treated by means of a coupled-channel framework for a Bakamjian-Thomas type mass operator. A current with the correct covariance properties is then derived from the pertinent leading-order electroweak scattering or decay amplitude. As it turns out, the electromagnetic current is affected by unphysical contributions which can be traced back to wrong cluster properties inherent in the Bakamjian-Thomas construction. These spurious contributions, however, can be separated uniquely, as in the covariant light-front approach. In this way we end up with form factors which agree with those obtained from the covariant light-front approach. As an example we will present results for electroweak form factors of heavy-light systems and discuss the heavy-quark limit which leads to the famous Isgur-Wise function.Comment: Presented at LIGHTCONE 2011, Dallas, USA, 23 - 27 May, 201

    Simulated-tempering approach to spin-glass simulations

    Full text link
    After developing an appropriate iteration procedure for the determination of the parameters, the method of simulated tempering has been successfully applied to the 2D Ising spin glass. The reduction of the slowing down is comparable to that of the multicanonical algorithm. Simulated tempering has, however, the advantages to allow full vectorization of the programs and to provide the canonical ensemble directly.Comment: 12 pages (LaTeX), 4 postscript figures, uufiles encoded, submitted to Physical Review

    Superselectors: Efficient Constructions and Applications

    Full text link
    We introduce a new combinatorial structure: the superselector. We show that superselectors subsume several important combinatorial structures used in the past few years to solve problems in group testing, compressed sensing, multi-channel conflict resolution and data security. We prove close upper and lower bounds on the size of superselectors and we provide efficient algorithms for their constructions. Albeit our bounds are very general, when they are instantiated on the combinatorial structures that are particular cases of superselectors (e.g., (p,k,n)-selectors, (d,\ell)-list-disjunct matrices, MUT_k(r)-families, FUT(k, a)-families, etc.) they match the best known bounds in terms of size of the structures (the relevant parameter in the applications). For appropriate values of parameters, our results also provide the first efficient deterministic algorithms for the construction of such structures

    A Spectral Bernstein Theorem

    Full text link
    We study the spectrum of the Laplace operator of a complete minimal properly immersed hypersurface MM in Rn+1\R^{n+1}. (1) Under a volume growth condition on extrinsic balls and a condition on the unit normal at infinity, we prove that MM has only essential spectrum consisting of the half line [0,+)[0, +\infty). This is the case when limr~+r~κi=0\lim_{\tilde{r}\to +\infty}\tilde{r}\kappa_i=0, where r~\tilde{r} is the extrinsic distance to a point of MM and κi\kappa_i are the principal curvatures. (2) If the κi\kappa_i satisfy the decay conditions κi1/r~|\kappa_i|\leq 1/\tilde{r}, and strict inequality is achieved at some point yMy\in M, then there are no eigenvalues. We apply these results to minimal graphic and multigraphic hypersurfaces.Comment: 16 pages. v2. Final version: minor revisions, we add Proposition 3.2. Accepted for publication in the Annali di Matematica Pura ed Applicata, on the 05/03/201

    The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order

    Get PDF
    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.Comment: 14 pages, 3 figure
    corecore