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The electric dipole form factor (EDFF) of the nucleon stemming from the QCD θ̄ term and from the
quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This
is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from
the pion cloud. In the case of the θ̄ term, the expected lower bound on the deuteron electric dipole
moment is |dd| � 1.4 · 10−4θ̄e fm. The momentum dependence of the isovector EDFF is proportional to
a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation—
appearing, in particular, in the radius of the form factor—is the pion mass.

© 2010 Elsevier B.V. Open access under CC BY license.
The electric dipole form factor (EDFF) completely specifies the
parity (P ) and time-reversal (T )-violating coupling of a spin 1/2
particle to a single photon [1,2]. At zero momentum, it reduces to
the electric dipole moment (EDM), and its radius provides a con-
tribution to the Schiff moment (SM) of a bound state containing
the particle [3]. The full momentum dependence of the form factor
can be used in lattice simulations to extract the EDM by extrapo-
lation from a finite-momentum calculation [4] (in addition to the
required extrapolations in quark masses and volume [5]).

There has been some recent interest [1,2,6–9] in the nucleon
EDFF motivated by prospects of experiments that aim to improve
the current bound on the neutron EDM, |dn| < 2.9 ·10−13e fm [10],
by nearly two orders of magnitude [11], and to constrain the pro-
ton and deuteron EDMs at similar levels [12]. We would like to
understand the implications of a possible signal in these mea-
surements to the sources of T violation at the quark level, which
include, in order of increasing dimension, the QCD θ̄ term, the
quark color-EDM (qCEDM) and EDM, the gluon color-EDM, etc. [13,
14]. Unfortunately, as with other low-energy observables, both the
EDM and the SM of hadrons and nuclei are difficult to calculate di-
rectly in QCD. However, long-range contributions from pions can,
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to some extent, be calculated using the low-energy effective field
theory of QCD, chiral perturbation theory (ChPT) [15–17]. ChPT af-
fords a systematic expansion of low-energy observables in powers
of Q /MQCD , where Q represents low-energy scales such as exter-
nal momenta and the pion mass mπ , and MQCD ∼ 1 GeV denotes
the characteristic QCD scale. (For introductions, see for example
Refs. [18,19].)

In Refs. [1,9] the nucleon EDFF stemming from T -violation
sources of effective dimension up to 6 was considered in ChPT to
the lowest order where momentum dependence appears. It was
argued [9] that the nucleon EDFF partially reflects the source of
T violation at the quark level. The various sources differ in par-
ticular in the expectation for the behavior of the isoscalar EDFF.
For θ̄ and qCEDM, the isoscalar momentum dependence appears
only at NLO. The nucleon EDFF from θ̄ was calculated at LO in
Ref. [1], generalizing to finite momenta earlier calculations of the
EDM [20,21] and SM [3]. At this order, the momentum depen-
dence is isovector and completely due to a T -violating coupling
of the pion cloud to the nucleon, with a radius fixed by m2

π
[3]. In Refs. [2,8] the EDFF calculation was extended to NLO, and
corrections found to be significant. For the qCEDM, the nucleon
EDFF has been calculated at LO [9], at which order it is iden-
tical to that from θ̄ . For the other sources of effective dimen-
sion 6, the quark EDM and the gluon color-EDM, the nucleon
EDFF, including its isoscalar component, has been calculated to
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NNLO [9] and found to be mostly determined by short-distance
physics.

Since the proposed deuteron experiment will probe the isoscalar
combination of neutron and proton EDMs (in addition to T -
violating two-nucleon effects), we present here results for the nu-
cleon EDFF to NLO from both θ̄ and qCEDM, using SU(2)L × SU(2)R

heavy-baryon ChPT [16]. For θ̄ , we extend the calculation of
Ref. [2] and reproduce the EDM results of Ref. [8], the latter ob-
tained from a relativistic version of large-Nc U (3)L × U (3)R ChPT,
except for isospin-violating terms neglected in Ref. [8]. At this
order, the isoscalar momentum dependence, and so the SM, is en-
tirely due to an isospin-breaking term related to the nucleon mass
splitting. As we are going to see, no new undetermined parame-
ters appear, other NLO contributions being given by non-analytic
recoil corrections proportional to mπ/mN , where mN is the nu-
cleon mass, and by another isospin-breaking term, related to the
pion mass splitting. We use the non-analytic contributions to the
isoscalar EDFF to provide an estimate of the minimum expected
size of the deuteron EDM. The EDFF from the qCEDM depends at
NLO on an additional T -violating pion-nucleon coupling, although
it is unlikely that the difference could be isolated experimen-
tally.

For simplicity we focus here on QCD with two light quark
flavors u and d, most relevant for low momenta Q ∼ mπ , and
consider as explicit degrees of freedom only nucleons, pions, and
photons. In the framework of ChPT, the most general effective La-
grangian is built up using QCD symmetries as a guide, in particu-
lar the chiral SUL(2) × SU(2)R ∼ SO(4) symmetry, which is spon-
taneously broken down to SU(2)L+R ∼ SO(3). A power-counting
argument must be used to order interactions according to the
expected size of their contributions. In order to fulfill chiral-
symmetry requirements, pions couple derivatively in the chiral
limit, which brings to amplitudes powers of pion momenta. Chiral-
symmetry-breaking terms involve the quark masses mu and md , so
they bring into amplitudes powers of the pion mass. Since nucle-
ons are non-relativistic, we remove the large, inert nucleon mass
from nucleon fields [16]. This gives one a chiral index (�) with
which to order terms in the Lagrangian [15,17], i.e. L = ∑

� L(�) .
For strong interactions, the index is given by � = d + n/2 − 2,
where n is the number of fermion fields and d counts the number
of derivatives and powers of the pion mass. Electromagnetic inter-
actions are proportional to the small proton charge e = √

4παem ,
and it is convenient to account for factors of e by enlarging the
definition of d accordingly. Each interaction is associated with a
parameter, or low-energy constant (LEC), which can be estimated
using naive dimensional analysis (NDA) [22,14]. In this case, the
index � tracks the number of inverse powers of MQCD ∼ 2π Fπ �
1.2 GeV, with Fπ � 186 MeV the pion decay constant, associated
with an interaction. (Note that since NDA associates the LECs of
chiral-invariant operators with gs/4π , for consistency one should
take the strong-interaction coupling gs ∼ 4π .)

The theory can be enlarged in a straightforward way to include
the delta isobar. Note that the delta isobar does not contribute to
the nucleon EDFF at the order in which we work. As is the case
for the nucleon anapole form factor [23], the structure of the delta
interactions that would contribute at NLO vanishes in ChPT. The
first non-vanishing delta contribution occurs at a higher order than
we are considering here.

The T -conserving terms that we will need consist of the fol-
lowing [19,24,25,2]:

L(0)
str/em = 1

2
Dμπ · Dμπ − m2

π

2D
π2

+ N̄iv · D N − 2g A
(Dμπ) · N̄τ SμN (1)
Fπ
and

L(1)
str/em = 1

2mN

{
−N̄ D2⊥N + 2g A

Fπ
(iv · Dπ) · N̄τ S · D−N

}

+ e

4mN
εμνρσ N̄

{
1 + κ0 + (1 + κ1)

×
[
τ3 − 2

F 2
π D

(
π2τ3 − π3π · τ )]}

vμSν N F ρσ

− δ̆m2
π

2D2

(
π2 − π2

3

) + δmN

2
N̄

(
τ3 − 2π3

F 2
π D

π · τ
)

N. (2)

Here π denotes the pion field in a stereographic projection of
SO(4)/SO(3), with D = 1 + π2/F 2

π ; N = (p n)T is a heavy-nucleon
field of velocity vμ and spin Sμ (Sμ = (0, �σ/2) in the nucleon rest
frame where vμ = (1, �0)); and Aμ is the photon field. In addition,
(Dμ)ab = D−1(δab∂μ − eε3ab Aμ) is the pion covariant derivative;
Dμ = ∂μ + iτ · (π × Dμπ)/F 2

π − ie Aμ(1 + τ3)/2 is the nucleon co-
variant derivative; and Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic
field strength. The component of Dμ perpendicular to vμ is writ-
ten

Dμ
⊥ = Dμ − vμv · D, (3)

and we use the shorthand notation

Dμ
± ≡ Dμ ± D†μ, τi Dμ

± ≡ τi Dμ ± D†μτi, (4)

where D† is defined through N̄ D† ≡ D N .
The pion-nucleon coupling g A in Eq. (1) and the anomalous

magnetic photon–nucleon couplings κ0 and κ1 in Eq. (2) are not
determined by symmetry, but are expected to be O(1), and in-
deed g A = 1.3, κ0 = −0.12, and κ1 = 3.7. The pion mass term in
Eq. (1) originates in explicit chiral-symmetry breaking by the av-
erage quark mass m̄ ≡ (md + mu)/2; from NDA, m2

π = O(m̄MQCD).
The contribution to the nucleon mass from a similar term, the nu-
cleon sigma term, has been removed by an appropriate definition
of the heavy-nucleon field, and the surviving nucleon-pion inter-
actions do not contribute below. The Goldberger–Treiman relation
gπ N N = 2g AmN/Fπ holds in the two lowest orders, and a term in

L(2)
str/em provides an O(m2

π/M2
QCD) correction that accounts [24] for

the so-called Goldberger–Treiman discrepancy.
In Eq. (2) we include explicitly the leading isospin-breaking in-

teractions [24] stemming from the quark mass difference, md −
mu ≡ 2εm̄, and from short-range electromagnetic effects. The
pion mass splitting is dominated by the electromagnetic con-
tribution δ̆m2

π = O(αemM2
QCD/4π); because this is, numerically,

of O(εm3
π/MQCD) we book this term in L(1)

str/em . The quark-mass
contribution to the pion splitting is suppressed by a further
εmπ/MQCD , one order down in the expansion. Thus, to the ac-
curacy in which we work here, δ̆m2

π is the observed pion mass
splitting, δ̆m2

π = (35.5 MeV)2 [26]. Note that with the way we have
written the splitting, in this Letter mπ stands for the neutral pion
mass, the charged pion mass squared being m2

π± = m2
π + δ̆m2

π .
The quark-mass contribution to the nucleon mass difference,

δmN , is expected to be O(εm2
π/MQCD) and it is evaluated to be

δmN = 2.26±0.57±0.42±0.10 MeV from lattice simulations [27],
which is in agreement with an extraction from charge-symmetry
breaking in the pn → dπ0 reaction [28]. This is consistent with the
NDA expectation that the corresponding electromagnetic contribu-
tion, δ̆mN , is O(αemMQCD/4π) and thus somewhat smaller; using
the Cottingham sum rule [29], δ̆mN = −(0.76 ± 0.30) MeV. In our
power counting, δ̆mN appears only in L(2)

str/em . It gives rise to dif-
ferent multi-pion interactions than does the δmN term, but these
multi-pion interactions do not matter below. Thus, if desired, the
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dominant effect from δ̆mN can be incorporated in our results with
the simple substitution δmN → δmN + δ̆mN .

We consider two sources of T violation at the scale MQCD: the
QCD θ̄ term and the qCEDM. In terms of a gluon field strength
Ga

μν and an appropriate choice [30,31] of quark fields q = (u d)T ,
we can write them as

L Q C D
/T = m�θ̄ q̄iγ5q − i

2
q̄(d̃0 + d̃3τ3)σ

μνγ5λ
aqGa

μν, (5)

where

m� = mumd

mu + md
= m̄

2

(
1 − ε2) = O(m̄) (6)

and d̃0 (d̃3) is the isoscalar (isovector) qCEDM. The first term in
Eq. (5) represents the effect of the θ̄ term under the assumption
that θ̄ is small, as inferred from the bound [10] on the neutron
EDM. (For the more general case, see Ref. [31].) The second term
in Eq. (5) is a QCD manifestation of sources of T violation at
a high scale M/T . At the Standard Model scale it is represented
by dimension-6 operators containing the mediator of electroweak-
symmetry breaking [13,14], which at lower scales picks up a vac-
uum expectation value that can be traded for m̄. We write [9]

d̃i = O
(

4πm̄

M2
/T

δ̃

)
(7)

in terms of a dimensionless factor δ̃. The size of δ̃ depends on
the exact mechanisms of electroweak and T breaking and on the
running to the low energies where non-perturbative QCD effects
take over. The minimal assumption is that it is O(gs/4π), with gs

the strong-coupling constant, but it can be much smaller (when
parameters encoding T -violation beyond the Standard Model are
small) or much larger (since the first-generation Yukawa couplings
are unnaturally small).

The implications of T violation to low-energy observables de-
pend on the way Eq. (5) breaks other QCD symmetries, in par-
ticular chiral symmetry [2,31,32]. The θ̄ term is the fourth com-
ponent of the same SO(4) vector P = (q̄τq, q̄iγ5q) that leads to
isospin breaking [1,2,31]. Therefore, it generates EFT interactions
that transform as T -violating, fourth components of SO(4) vectors
made out of hadronic fields, with coefficients related to those of
T -conserving interactions. Similarly, the qCEDM breaks chiral sym-
metry as a combination of fourth and third components of two
other SO(4) vectors [2,9,32]. As in the T -conserving case, we can
use NDA to estimate the strength of the effective interactions, and
continue to label terms in the effective chiral Lagrangian by the
powers of M−1

QCD . Details of the construction of the Lagrangian from
these terms are discussed in Refs. [31,32].

The relevant terms here are the pion-nucleon interactions

L(n)
/T = − 1

Fπ D
N̄(ḡ0π · τ + ḡ1π3)N (8)

and

L(n+1)
/T = 2

F 2
π D

(Dμπ) · N̄(h̄0π + h̄1π3τ )SμN

+ h̄2

Fπ D

(
δi3 − 2πiπ3

F 2
π D

)
N̄(τ × v · Dπ)i N, (9)

and the short-range contributions to the nucleon EDM,

L(n+2)
/T + L(n+3)

/T

= 2N̄

{(
1 − 2π2

F 2
π D

)[
d̄0 + d̄′

1

(
τ3 − 2

F 2
π D

(
π2τ3 − π3π · τ ))]

+ d̄1

(
τ3 − 2π3

F 2 D
π · τ

)}
Sμ

(
vν + iDν⊥−

2m

)
N Fμν. (10)
π N
Here ḡi , h̄i , d̄i , and d̄′
1 are parameters of sizes

ḡ0 = O
(

θ̄
m2

π

MQCD
, δ̃

m2
π MQCD

M2
/T

)
, ḡ1 = O

(
δ̃

m2
π MQCD

M2
/T

)
, (11)

h̄0 = O
(

θ̄
m2

π

M2
QCD

, δ̃
m2

π

M2
/T

)
, h̄1,2 = O

(
δ̃

m2
π

M2
/T

)
, (12)

and

d̄0,1, d̄′
1 = O

(
eθ̄

m2
π

M3
QCD

, eδ̃
m2

π

M2
/T MQCD

)
. (13)

The isoscalar (d̄0) and isovector (d̄1, d̄′
1) contributions to the nu-

cleon EDM occur for both T -violation sources. Direct short-range
contributions to the momentum dependence of the EDFF first ap-
pear in L(n+4)

/T , being further suppressed by O(Q /MQCD). For θ̄ ,
n = 1 and among the T -violating π N interactions only the I = 0
interactions with coefficients ḡ0 and h̄0 appear [1]. Because of the
link with isospin violation [31],

ḡ0 = m�δmN

εm̄
θ̄ � δmN

2ε
θ̄ . (14)

A similar connection exists between h̄0 and the leading isospin
breaking in the pion-nucleon vertex. For qCEDM, n = −1 and all
π N terms should be included. Since in this case there is no analo-
gous link to T -conserving quantities, one cannot do better than the
NDA estimates (11) and (12) without lattice or dynamical-model
input.

The T -violating current-current nucleon-electron interaction is
of the form

iT = −ieē
(
l′
)
γ μe(l)Dμν(q) N̄

(
p′) Jνed(q, K )N(p), (15)

where e(l) (N(p)) is an electron (nucleon) spinor with momentum
l (p) and Dμν(q) = −i(ημν/q2 +· · ·) is the photon propagator with
q2 = (p − p′)2 ≡ −Q 2 < 0. The nucleon electric dipole current Jμed
can be expressed in terms of q = p − p′ and K = (p + p′)/2 as an
expansion in powers of Q /mN that reads [1,31,9]

Jμed(q, K ) = 2
(

F0
(

Q 2) + F1
(

Q 2)τ3
)[

Sμv · q − S · qvμ

+ 1

mN

(
Sμq · K − S · qKμ

) + . . .

]
, (16)

where F0(Q 2) (F1(Q 2)) is the isoscalar (isovector) EDFF of the nu-
cleon. We will write

Fi
(

Q 2) = di − S ′
i Q 2 + Hi

(
Q 2), (17)

where di is the EDM, S ′
i the SM, and Hi(Q 2) accounts for the re-

maining Q 2 dependence.
The form factor itself can be expanded in powers of Q /MQCD .

The leading-order (LO) contributions to the current, which are
O(eḡ0 Q /(2π Fπ )2), have been calculated in Refs. [1,9]. They in-
clude the unknown short-range contributions in L(n+2)

/T (10), and

loop diagrams made out of T -violating interactions in L(n)
/T (8)

and T -conserving interactions in L(0)
str/em (1). Here we focus on the

next-to-leading order (NLO), that is, terms of relative O(Q /MQCD).
They are made of diagrams with one insertion of interactions in
L(n+3)

/T (10), L(n+1)
/T (9), or L(1)

str/em (2). There are no new, un-
known short-range parameters appearing at tree level, the recoil
corrections in L(n+3)

/T (10) simply ensuring—together with those in

L(1)
str/em (2)—the form (16) of the current. The loop diagrams con-

tributing to the nucleon EDFF in NLO are shown in Figs. 1 and 2,
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Fig. 1. One-loop diagrams contributing to the nucleon electric dipole form factor in sub-leading order coming from one insertion of an L(1)
str/em operator. Solid, dashed and

wavy lines represent nucleons, pions and (virtual) photons, respectively; single filled circles stand for interactions from L(0)
str/em while double circles for interactions from

L(1)
str/em; squares represent the T -violating vertices from L(n)

/T
. For simplicity only one possible ordering is shown here.
Fig. 2. Diagrams contributing to the nucleon electric dipole form factor in sub-
leading order coming from one insertion of the T -violating vertex from L(n+1)

/T
,

represented by a circled square. Other symbols are as in Fig. 1. For simplicity only
one possible ordering is shown here.

classified according to the combination of couplings that they con-
tain. All other contributions to the EDFF are formally of higher
order: they come from more powers of momenta in diagrams with
the same number of loops, or from extra loops.

The NLO diagrams of Fig. 1 are built from the leading interac-
tions in Eqs. (1) and (8), plus one insertion of an operator from
Eq. (2). Diagrams 1(a), (b), (c) represent a correction to the exter-
nal energies,

v · q = −q · K

mN
, (18)

v · K = − 1

2mN

(
K 2 + q2

4

)
∓ δmN

2
, (19)

of a proton (− sign) or neutron (+ sign) in LO diagrams. (In the
remaining NLO diagrams, we set the right-hand side of these equa-
tions to zero.) Analogous insertions in the nucleon propagator are
represented by Diagrams 1(d), (e), (f). Diagrams 1(g), (h), (i) orig-
inate in the recoil correction in pion emission/absorption, while
Diagram 1(j) arises from the magnetic photon–nucleon interaction.
Diagrams 1(k), (l), (m) represent an insertion of the pion mass
splitting in pion propagation. These one-loop diagrams contribute
to the current at order O(eḡi Q 2/(2π Fπ )2mN).

The NLO diagrams in Fig. 2 are built from the leading inter-
actions in Eq. (1) with one insertion of an operator from Eq. (9).
Diagrams 2(a), (b) stem from the sub-leading pion-nucleon cou-
plings h̄0,1, and Diagrams 2(c), (d), (e), (f) from the sub-leading
coupling h̄2, present only for qCEDM. These one-loop diagrams
contribute to the current at order O(eh̄i Q 2/(2π Fπ )2), which is
precisely the same order as the diagrams in Fig. 1.

The diagrams in Figs. 1 and 2 can be evaluated in a straightfor-
ward way. We use regularization in d spacetime dimensions, and
define

L ≡ 2

4 − d
− γE + ln 4π, (20)

where γE = 0.557 . . . is the Euler constant. The LO loop contribu-
tions depend on a renormalization scale μ but this dependence is
compensated for by the contribution from the short-range interac-
tions in Eq. (10). The NLO diagrams are finite in this regularization
scheme.

Most of the diagrams actually vanish when the on-shell con-
ditions (18) and (19) are consistently enforced. Diagrams (a), (b)
in Fig. 2 vanish due to isospin. Since Diagrams 2(c), (d), (e), (f)
vanish too, the EDFF to this order depends only on the leading T -
violating parameters ḡ0,1 through Fig. 1. Diagram 1(j) vanishes due
to its spin structure and therefore the EDFF does not depend on
the anomalous magnetic moments, either. Diagram 1(h) gives both
isoscalar and isovector contributions. The remaining non-vanishing
diagrams are 1(a), (d), (k). Neglecting T -conserving isospin viola-
tion, these diagrams give purely isovector results. In the case of θ̄ ,
the results are proportional to eg A ḡ0/(2π Fπ )2, as in LO [1], times
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the recoil suppression factor mπ/mN . For qCEDM, there is an addi-
tional momentum-independent contribution proportional to ḡ1.

We have checked each of the isospin-breaking contributions
in two ways. The contributions from δ̆m2

π come through Dia-
grams 1(k), (l), (m). Because the LO EDFF originates entirely in
charged-pion diagrams, these contributions can be obtained alter-
natively by evaluating the LO EDFF with m2

π + δ̆m2
π , then expanding

in powers of δ̆m2
π/m2

π :

F1
(

Q 2)∣∣
m2

π+δ̆m2
π

= F1
(

Q 2)∣∣
m2

π
+ δ̆m2

π

∂ F1(Q 2)

∂m2
π

∣∣∣∣
m2

π

+ · · · . (21)

The resulting EDFF is thus isovector. Including the nucleon mass
difference δmN , Diagrams 1(a), (d) generate an additional isoscalar
contribution. As a check, we have performed the field redefinition
of Ref. [33], which amounts here to adding to Eq. (2)

�L(1)
str/em = −δmN

2
N̄τ3N − δmN(π × v · Dπ)3. (22)

The first term eliminates δmN from the internal nucleon lines and
from the asymptotic states (and thus from Eq. (19)), but the sec-
ond term generates extra contributions ∝ δmN in Diagrams 1(k),
(l), (m) and a new isospin-breaking photon-pion coupling, which
appears in a diagram with the same topology as Diagram 1(d). The
same final result is obtained.

The diagrams in Fig. 1 contribute to both isoscalar and isovector
EDMs. Taking the NLO contributions together with the LO from
Refs. [1,9], we have

d0 = d̄0 + eg A ḡ0

(2π Fπ )2
π

[
3mπ

4mN

(
1 + ḡ1

3ḡ0

)
− δmN

mπ

]
, (23)

d1 = d̄1 + d̄′
1 + eg A ḡ0

(2π Fπ )2

[
L − ln

m2
π

μ2

+ 5π

4

mπ

mN

(
1 + ḡ1

5ḡ0

)
− δ̆m2

π

m2
π

]
. (24)

The LO piece in Eq. (24), which depends on ḡ0 and is non-analytic
in m2

π , is, with the use of the Goldberger–Treiman relation, the
result of Ref. [20], which holds also for the qCEDM [9]. The short-
range isovector combination d̄1 + d̄′

1 absorbs the divergence and
μ dependence of the LO loop. The short- and long-range contribu-
tions to the EDM are in general of the same size, but a cancellation
is unlikely due to the non-analytic dependence on mπ of the pion
contribution. The isoscalar parameter d̄0 is not needed for renor-
malization at this order, but there is no apparent reason to assume
its size to be much smaller than NDA either.

At NLO, the EDM receives finite non-analytic corrections, which
depend also on ḡ1 for qCEDM. From Eqs. (23) and (24) we see
that, as usual in baryon ChPT, the NLO contributions are enhanced
by π over NDA. However, the other dimensionless factors are not
large enough to overcome the mπ/mN suppression. Setting μ to
mN as a representative value for the size of d1 [20], the NLO
term in Eq. (24) (Eq. (23)) is about 15% (10%) of the leading non-
analytic term in Eq. (24), indicating good convergence of the chiral
expansion. The isovector character of the LO non-analytic terms
is approximately preserved at NLO. Isospin-breaking contributions,
although formally NLO, are pretty small, amounting to 15–20% of
the total NLO contribution.

In the case of θ̄ we can use Eq. (14) and expect

|dn| = |d0 − d1|
� eg A

(2π Fπ )2

δmN

2ε

[
ln

m2
N

m2
π

+ π

2

mπ

mN
− δ̆m2

π

m2
π

+ π
δmN

mπ

]
θ̄

� (1.99 + 0.12 − 0.04 + 0.03) · 10−3θ̄e fm (25)
for the neutron EDM and

|dp| = |d0 + d1|

� eg A

(2π Fπ )2

δmN

2ε

[
ln

m2
N

m2
π

+ 2π
mπ

mN
− δ̆m2

π

m2
π

− π
δmN

mπ

]
θ̄

� (1.99 + 0.46 − 0.04 − 0.03) · 10−3θ̄e fm (26)

for the proton EDM, using the lattice QCD value δmN/2ε =
2.8 MeV [27]. Non-analytic NLO corrections are therefore some-
what larger for the proton EDM, but this difference is unlikely to
be significant in light of our ignorance about the size of short-
range contributions.

The non-analytic terms in Eq. (23) represent a lower-bound
estimate for the size of the nucleon isoscalar EDM, as the short-
range contribution d̄0 is nominally of lower order. The expected
lower bound on the nucleon isoscalar EDM might have implica-
tions for proposed experiments on EDMs of light nuclei. In these
cases, there will be additional many-nucleon contributions, but the
average of the one-nucleon contributions still provides an estimate
of the order of magnitude of the expected nuclear EDM. For the
deuteron, the average one-nucleon contribution is exactly d0 and,
in the case of θ̄ , we expect for the deuteron EDM

|dd| � eg A

(2π Fπ )2

δmN

2ε
π

[
3mπ

4mN
− δmN

mπ

]
θ̄

� (1.7 − 0.3) · 10−4θ̄e fm. (27)

Therefore, if there are no cancellations, a deuteron EDM signal
from θ̄ is expected to be larger than about 10% of the neutron
EDM signal.

Note that short- and long-range physics cannot be separated
with a measurement of the neutron and proton EDMs alone. On
the other hand, the momentum dependence of the EDFF is com-
pletely determined, to the order we are working, by long-range
contributions generated by ḡ0. It is therefore the same for θ̄ and
qCEDM. It turns out that the isoscalar form factor receives momen-
tum dependence only from isospin-breaking terms, while there is a
non-vanishing correction to the isovector momentum dependence
also from isospin-conserving terms.

The variation of the form factor with Q 2 can be characterized
at very small momenta by the electromagnetic contribution to the
nucleon SM, the leading and sub-leading contributions of which
we find to be

S ′
0 = − eg A ḡ0

6(2π Fπ )2m2
π

π

2

δmN

mπ
, (28)

S ′
1 = eg A ḡ0

6(2π Fπ )2m2
π

[
1 − 5π

4

mπ

mN
− δ̆m2

π

m2
π

]
. (29)

The LO, isovector term is the result of Refs. [3,1]. While the EDM
vanishes in the chiral limit, the isovector SM is finite. The NLO
correction, which agrees with the θ̄ result of Ref. [8] when T -
conserving isospin violation is neglected, vanishes in the chiral
limit but gives a relatively large correction to the isovector SM of
about 60%, due to the numerical factor 5π/4. Again, the isospin-
breaking corrections are relatively small, and, as a consequence, at
NLO the SM remains mostly isovector.

To this order, the SM is entirely given, apart for ḡ0, by quanti-
ties that can be determined from other processes. In the case of θ̄ ,
we can again use Eq. (14) to estimate

S ′
0 = − eg A

12(2π F )2

π(δmN)2

3
θ̄ � −5.0 · 10−6θ̄e fm3, (30)
π 2εmπ
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S ′
1 = eg A

12(2π Fπ )2

δmN

εm2
π

[
1 − 5π

4

mπ

mN
− δ̆m2

π

m2
π

]
θ̄

� 6.8 · 10−5θ̄e fm3, (31)

where again we used the lattice-QCD value [27] for δmN/2ε. From
these results we can straightforwardly obtain the SM for the pro-
ton and the neutron. Although we could again use the isoscalar
component as an estimate for a lower bound on the deuteron
SM, there could be potentially significant contributions from the
deuteron binding momentum.

The full momentum dependence of the EDFF is given in addi-
tion by the functions Hi(Q 2) introduced in Eq. (17),

H0
(

Q 2) = − 4eg A ḡ0

15(2π Fπ )2

3π

4

δmN

mπ
h(1)

0

(
Q 2

4m2
π

)
, (32)

H1
(

Q 2) = 4eg A ḡ0

15(2π Fπ )2

[
h(0)

1

(
Q 2

4m2
π

)
− 7π

8

mπ

mN
h(1)

1

(
Q 2

4m2
π

)

− 2δ̆m2
π

m2
π

h̆(1)
1

(
Q 2

4m2
π

)]
. (33)

Here, the LO term,

h(0)
1 (x) = −15

4

[√
1 + 1

x
ln

(√
1 + 1/x + 1√
1 + 1/x − 1

)
− 2

(
1 + x

3

)]
, (34)

is the one calculated in Refs. [1,9], while we now obtain the NLO
isovector functions

h(1)
1 (x) = −1

7

[
3(1 + 2x)h(1)

0 (x) − 10x2], (35)

and

h̆(1)
1 (x) = − 1

4(1 + x)

(
h(0)

1 (x) − 5x2), (36)

and the NLO isoscalar function

h(1)
0 (x) = 5

(
1√

x
arctan

√
x − 1 + x

3

)
. (37)

In compliance with the definition of Hi , the four functions behave
as h(n)

i (x) = x2 + O(x3) for x 
 1.
As in lowest order, the momentum dependence is fixed by the

pion cloud. Thus the scale for momentum variation is determined
by 2mπ . As for the SM, NLO corrections can be significant, but
the isospin-breaking contributions are small. Both the SM and the
functions H0,1(Q 2) are testable predictions of ChPT. Unfortunately,
since the full momentum dependence of the EDFF will not be
measured anytime soon, this observation carries no practical im-
plications for the next generation of EDM experiments.

In summary, we have calculated the nucleon electric dipole
form factor due to the θ̄ term and to the quark color-electric
dipole moment in sub-leading order in ChPT, including isospin-
breaking effects. The chiral expansion seems to be converging,
although NLO corrections are enhanced by extra factors of π .
Under the assumption that higher-order results are not afflicted
by anomalously-large dimensionless factors, the relative error of
our results at momentum Q should be ∼ (Q /MQCD)2. The NLO
isospin-breaking contributions are relatively small and could be
overcome by isospin-conserving contributions at NNLO. We have
shown that at NLO the EDFF includes both isoscalar and isovec-
tor components, with a Q 2 dependence determined by non-
derivative T -violating pion-nucleon couplings and the pion mass.
The isoscalar momentum dependence is entirely due to the nu-
cleon mass splitting. We have provided a lower-bound estimate for
the isoscalar nucleon EDM, expected to set also the minimum size
of the deuteron EDM. A full calculation of the latter in ChPT can
now be performed.
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