11 research outputs found

    Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 3: total thyroxine and total triiodothyronine.

    No full text
    Item does not contain fulltextBACKGROUND: Because total thyroid hormone testing is performed on many automated clinical chemistry instruments, the IFCC Scientific Division commissioned the Working Group for Standardization of Thyroid Function Tests to include total thyroxine (TT4) and total triiodothyronine (TT3) in its standardization efforts. METHODS: Existing SI-traceable reference measurement procedures (RMPs) were used to assign TT4 and TT3 values to 40 single-donor serum samples for subsequent use in a method comparison study with 11 TT4 and 12 TT3 immunoassays. Data from comparison of each immunoassay with the RMPs provided a basis for mathematical assay recalibration. RESULTS: Seven TT4 assays had a mean bias within 10% of the RMP, but 2 deviated by an average of -12% and another 2 by +17%. All TT3 assays showed positive biases, 4 within and 8 outside 10%, up to 32%. Mathematical recalibration effectively eliminated assay-specific biases, but sample-related effects remained, particularly for TT3. Correlation coefficients with the RMPs ranged from 0.82 to 0.97 for TT4 and from 0.32 to 0.92 for TT3. The within-run and total imprecision ranges for TT4 were 1.4% to 9.1% and 3.0% to 9.4%, respectively, and for TT3 2.1% to 7.8% and 2.8% to 12.7%, respectively. Approximately one-half of the assays matched the internal QC targets within approximately 5%; however, we observed within-run drifts/shifts. CONCLUSIONS: The study showed that of the assays we examined, only 4 TT4 but the majority of the TT3 assays needed establishment of calibration traceability to the existing RMPs. Most assays performed well, but some would benefit from improved precision, within-run stability, and between-run consistency.1 juni 201

    Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 2: free thyroxine and free triiodothyronine.

    No full text
    Item does not contain fulltextBACKGROUND: Free thyroxine (FT4) and free triiodothyronine (FT3) measurements are useful in the diagnosis and treatment of a variety of thyroid disorders. The IFCC Scientific Division established a Working Group to resolve issues of method performance to meet clinical requirements. METHODS: We compared results for measurement of a panel of single donor sera using clinical laboratory procedures based on equilibrium dialysis-isotope dilution-mass spectrometry (ED-ID-MS) (2 for FT4, 1 for FT3) and immunoassays from 9 manufacturers (15 for FT4, 13 for FT3) to a candidate international conventional reference measurement procedure (cRMP) also based on ED-ID-MS. RESULTS: For FT4 (FT3), the mean bias of 2 (4) assays was within 10% of the cRMP, whereas for 15 (9) assays, negative biases up to -42% (-30%) were seen; 1 FT3 assay was positively biased by +22%. Recalibration to the cRMP eliminated assay-specific biases; however, sample-related effects remained, as judged from difference plots with biologic total error limits. Correlation coefficients to the cRMPs ranged for FT4 (FT3) from 0.92 to 0.78 (0.88 to 0.30). Within-run and total imprecision ranged for FT4 (FT3) from 1.0% to 11.1% (1.8% to 9.4%) and 1.5% to 14.1% (2.4% to 10.0%), respectively. Approximately half of the manufacturers matched the internal QC targets within approximately 5%; however, within-run instability was observed. CONCLUSIONS: The study showed that most assays had bias largely correctable by establishing calibration traceability to a cRMP and that the majority performed well. Some assays, however, would benefit from improved precision, within-run stability, and between-run consistency.1 juni 201

    Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 1: thyroid-stimulating hormone.

    No full text
    Item does not contain fulltextBACKGROUND: Laboratory testing of serum thyroid-stimulating hormone (TSH) is an essential tool for the diagnosis and management of various thyroid disorders whose collective prevalence lies between 4% and 8%. However, between-assay discrepancies in TSH results limit the application of clinical practice guidelines. METHODS: We performed a method comparison study with 40 sera to assess the result comparability and performance attributes of 16 immunoassays. RESULTS: Thirteen of 16 assays gave mean results within 10% of the overall mean. The difference between the most extreme means was 39%. Assay-specific biases could be eliminated by recalibration to the overall mean. After recalibration of singlicate results, all assays showed results within the biological total error goal (22.8%), except for 1 result in each of 4 assays. For a sample with a TSH concentration of 0.016 mIU/L, 6 assays either did not report results or demonstrated CVs >20%. Within-run and total imprecision ranged from 1.5% to 5.5% and 2.5% to 7.7%, respectively. Most assays were able to match the internal QC targets within 5%. Within-run drifts and shifts were observed. CONCLUSIONS: Harmonization of TSH measurements would be particularly beneficial for 3 of the 16 examined assays. These data demonstrate that harmonization may be accomplished by establishing calibration traceability to the overall mean values for a panel of patient samples. However, the full impact of the approach must be further explored with a wider range of samples. Although a majority of assays showed excellent quality of performance, some would benefit from improved within-run stability.1 juni 201

    Proposal of a candidate international conventional reference measurement procedure for free thyroxine in serum.

    No full text
    Item does not contain fulltextIn the present paper the IFCC WG-STFT recommends and provides the rationale to establish metrological traceability of serum free thyroxine (FT4) measurements to a candidate international conventional reference measurement procedure. It is proposed that this procedure be based on equilibrium dialysis combined with determination of thyroxine in the dialysate with a trueness-based reference measurement procedure. The measurand is thus operationally defined as "thyroxine in the dialysate from equilibrium dialysis of serum prepared under defined conditions". With regard to the trueness-based reference measurement procedure, the WG-STFT recommends use of an isotope dilution-liquid chromatography/tandem mass spectrometry (ID-LC/tandem MS) procedure for total thyroxine that has been optimized towards measurement at picomolar concentration levels and that is listed in the database of the Joint Committee for Traceability in Laboratory Medicine (JCTLM). For calibration, the purified thyroxine material IRMM-468 (resulting from a project funded by the European Commission and recently submitted to the JCTLM) is proposed. The WG-STFT stresses that according to this recommendation it is a prerequisite to strictly adhere to the defined equilibrium dialysis procedure, whereas it is permissible to introduce variants in the ID-LC/tandem MS procedure
    corecore