60 research outputs found

    Highly depleted isotopic compositions evident in Iapetus and Rheic Ocean basalts: implications for crustal generation and preservation

    Get PDF
    Subduction of both the Iapetus and Rheic oceans began relatively soon after their opening. Vestiges of both the Iapetan and Rheic oceanic lithospheres are preserved as supra-subduction ophiolites and related mafic complexes in the Appalachian–Caledonian and Variscan orogens. However, available Sm–Nd isotopic data indicate that the mantle source of these complexes was highly depleted as a result of an earlier history of magmatism that occurred prior to initiation of the Iapetus and Rheic oceans. We propose two alternative models for this feature: either the highly depleted mantle was preserved in a long-lived oceanic plateau within the Paleopacific realm or the source for the basalt crust was been recycled from a previously depleted mantle and was brought to an ocean spreading centre during return flow, without significant re-enrichment en-route. Data from present-day oceans suggest that such return flow was more likely to have occurred in the Paleopacific than in new mid-ocean ridges produced in the opening of the Iapetus and Rheic oceans. Variation in crustal density produced by Fe partitioning rendered the lithosphere derived from previously depleted mantle more buoyant than the surrounding asthenosphere, facilitating its preservation. The buoyant oceanic lithosphere was captured from the adjacent Paleopacific, in a manner analogous to the Mesozoic–Cenozoic “capture” in the Atlantic realm of the Caribbean plate. This mechanism of “plate capture” may explain the premature closing of the oceans, and the distribution of collisional events and peri-Gondwanan terranes in the Appalachian–Caledonian and Variscan orogens

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    Isotherm consideration of PAHs adsorbed on polymeric capillary tubing in an aqueous sample preconcentration

    No full text
    This study examined the isotherm of polycyclic aromatic hydrocarbons (PAHs) adsorbed on capillary concentrating tubing. Equations for common adsorption isotherms, including Langmuir and modified Freundlich, were used to fit the adsorption data obtained from pyrene and acenaphthene samples. Each fitting's correlation coefficient was then used to assess the appropriateness of the isotherm of interest. Experimental results indicate that the modified Frundlich isotherm most aptly accounts for monocomponent PAH adsorption from water onto ethyl vinyl acetate tubing. From the appropriateness of the Langmuir isotherm individually in low-and high-concentration ranges, multilayer adsorption apparently occurs at a higher concentration. In bicomponent adsorption, acenaphthene was highly competitive with pyrene at a higher competition coefficient. In addition, the competitive coefficient of an analyte increased with decreasing competitor concentration

    Fitting a random effects model to ordinal recurrent events using existing software.

    No full text
    The continuation ratio model is a direct generalisation of the more familiar binary logistic model. In this paper, it is proposed to model ordinal recurrent events by generalising the logistic-normal model for binary recurrent events in a similar manner. This new model is implemented in the statistical software package SABRE
    • …
    corecore