2,356 research outputs found

    Thermoregulatory and cardiovascular responses to creatine, glycerol and alpha lipoic acid in trained cyclists

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been shown that supplementation with creatine (Cr) and glycerol (Gly), when combined with glucose (Glu) necessary for the enhancement of Cr uptake by skeletal muscle, induces significant improvements in thermoregulatory and cardiovascular responses during exercise in the heat.</p> <p>Purpose</p> <p>To determine whether Cr/Gly-induced thermoregulatory and cardiovascular responses are maintained when the majority (~75%) of the Glu in the Cr/Gly supplement is replaced with the insulintropic agent alpha lipoic acid (Ala).</p> <p>Methods</p> <p>22 healthy endurance trained cyclists were randomly assigned to receive either 20 g/day (4 × 5 g/day) of Cr, 2 g <sup>.</sup>kg<sup>-1</sup> BM per day (4 × 0.5 g <sup>.</sup>kg<sup>-1</sup> BM per day) of Gly and 150 g/day (4 × 37.5 g/day) of Glu or 20 g/day (4 × 5 g/day) of Cr monohydrate, 2 g <sup>.</sup>kg<sup>-1</sup> BM per day (4 × 0.5 g <sup>.</sup>kg<sup>-1</sup> BM per day) of Gly (100 g/day (4 × 25 g/day) of Glu and 1000 mg/day (4 × 250 mg/day) of Ala for 7 days for 7 days. Exercise trials were conducted pre- and post-supplementation and involved 40 min of constant-load cycling exercise at 70% O<sub>2</sub> max by a self-paced 16.1 km time trial at 30°C and 70% relative humidity.</p> <p>Results</p> <p>Median and range values of TBW increased significantly by 2.1 (1.3-3.3) L and 1.8 (0.2-4.6) L in Cr/Gly/Glu and Cr/Gly/Glu/Ala groups respectively (<it>P</it> = 0.03) and of BM not significantly by 1.8 (0.2-3.0) kg and 1.2 (0.5-2.1) kg in Cr/Gly/Glu and in Cr/Gly/Glu/Ala, respectively (<it>P</it> = 0.75). During constant load exercise, heart rate (HR) and core temperature (Tcore) were significantly lower post-supplementation: HR was reduced on average by 3.3 ± 2.1 beats/min and by 4.8 ± 3.3 beats/min (mean ± SD) and Tcore by 0.2 ± 0.1 (mean ± SD) in the Cr/Gly/Glu and Cr/Gly/Glu/Ala, respectively The reduction in HR and Tcore was not significantly different between the supplementation groups.</p> <p>Conclusions</p> <p>In comparison to the established hyper hydrating Cr/Gly/Glu supplement, supplement containing Cr/Gly/Ala and decreased amount of Glu provides equal improvements in thermoregulatory and cardiovascular responses during exercise in the heat.</p

    Separation of Cholesterol from other Steroids Using Molecularly Imprinted Polymer Prepared by Seeded Suspension Polymerization

    Get PDF
    Micron-sized particles of cholesterol-imprinted polymers were synthesized by seeded suspension polymerization in a mixture of 2-propanol and water using polystyrene microbeads as the seeds. Methacrylic acid was employed as the functional monomer to form complexes with template (cholesterol), along with ethylene glycol dimethacrylate as the crosslinker. After removal of template molecules, the columns ( H=15 cm, Di= 0.46 cm ) packed with cholesterol-imprinted polymers were effective for the chromatographic separation of cholesterol from other steroids. When the sample of steroids was eluted isocratically at a flow-rate of Q = 0.5 mL min-1, using a mixture of acetonitrile and water (Ψ= 95:5) as the mobile phase, the retention times for estrone, -estradiol and cholesterol were respectively τ = 5.3, 12.3 and 17.2 min. The average retention times were = 5.3, 10.9 and 16.7 min respectively for estrone, progesterone and cholesterol in samples. The separation was based on the specific binding of cholesterol to recognition sites formed on the imprinted polymers. A separation factor of 1.6 for cholesterol and -estradiol was obtained. The chromatographic efficiency was dependent on the mobile phase composition. Reducing the water content in the non-polar mobile phase to zero could significantly enhance the separation. Compared with particles from bulk polymerization, the column packed with cholesterol-imprinted particles from seeded suspension polymerization had a higher chromatographic efficiency and the advantage of microanalysi

    The Application of RFID in Emergency Medicine

    Get PDF
    Recently natural disasters and man-made calamities happened very frequently in Taiwan, some of which caused hundreds of inhabitants died and injured. The most important thing that makes the emergency medical treatment system work effectively during these catastrophes is dependent on the accuracy and immediacy of the information among ambulances, hospitals, fire bureaus, public health bureaus or offices, and emergency executive centers. With this information, the medical system can arrange the resources efficiently. Radio frequency identification (RFID) is a kind of wireless technology that it uses radio frequency (RF) to identify target objects. The characteristics of RFID are its identification and orientation. Through tracing electronic signals, RFID is able to identify, orientate and trace patients or medical materials directly and continuously. Thus, RFID can help managers of medical institutions to promote emergency medical treatment quality, reduce medical mistakes effectively, and increase efficiency and effectiveness in hospitals. A series of emergency medical delivery applications that use 915MHz RFID rings is developed in this paper. Through the help of RFID, the paper integrates the information of the whole emergency medical supply chain, and establishes a new model of emergency medical activities to solve the problems of information blocking among different medical rescue units. By solving these problems, the new model can enhance the rescue quality, reduce the damage of the disaster and strengthen the patient-oriented emergency care system

    Absence of anisotropic universal transport in YBCO

    Full text link
    There exists significant in-plane anisotropy between aa and bb axis for various properties in YBCO. However recent thermal conductivity measurement by Chiao et al. which confirms previous microwave conductivity measurement by Zhang et al., shows no obvious anisotropy in the context of universal transport. We give a possible explanation of why the anisotropy is seen in most properties but not seen in the universal transport.Comment: 4 pages, 4 figure

    Groundwater chemistry in the vicinity of the Puna Geothermal Venture power plant, Hawaii, after two decades of production

    Get PDF
    For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747).We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant

    Sumoylation of LAP1 is involved in the HDAC4-mediated repression of COX-2 transcription

    Get PDF
    CEBPB, one of the CEBP family members, is a crucial regulator of gene expression during innate immunity, inflammatory responses and adipogenesis. In this study, the EGF-induced increase of CEBPB mRNA is shown to be coincident with the decrease of COX-2 mRNA. We identified that all of the individual CEBPB isoforms, LAP1, LAP2 and LIP, attenuate EGF-induced COX-2 promoter activity. Although increased sumoylation of both LAP1 and LAP2 is observed during the lagging stage of EGF treatment, only the sumoylated LAP1, but not the sumoylated LAP2, is responsible for COX-2 gene repression. In addition, EGF treatment can regulate the nucleocytoplasmic redistribution of HDAC4 and SUMO1. We further demonstrated by loss-of- and gain-of-function approaches that HDAC4 can be a negative regulator while inactivating COX-2 transcription. The sumoylation mutant LAP1, LAP1K174A, exhibits an attenuated ability to interact with HDAC4, and increased COX-2 promoter activity. Furthermore, the in vivo DNA binding assay demonstrated that LAP1K174A and CEBPDK120A, sumoylation-defective CEBPD mutants, attenuate the binding of HDAC4 on the COX-2 promoter. In light of the above, our data suggest that the suCEBPD and suLAP1 are involved in the repression of COX-2 transcription through the recruitment of HDAC4
    corecore