48 research outputs found
Carbono orgânico dissolvido e biodisponibilidade de N e P como indicadores de qualidade do solo
Nas últimas décadas, qualidade do solo tem se tornado um tópico importante na ciência do solo. Embora esforços consideráveis tenham sido dedicados com o intuito de definir "qualidade do solo", ainda não há um conceito amplamente aceito pela comunidade cientifica. A seleção de índices qualitativos para definir qualidade do solo é uma tarefa extremamente difícil, e diversas propriedades químicas, físicas e biológicas tem sido sugeridas como potenciais indicadores. A matéria orgânica do solo está associada com processos químicos, físicos e biológicos no solo, e, portanto, é considerada um dos melhores indicadores de qualidade do solo. O manejo do solo pode influenciar significativamente a dinâmica do carbono orgânico e o ciclo de N, P, e S. Entretanto, mudanças na concentração total da matéria organica em resposta ao manejo pode ser dificil de ser detectada devido à variabilidade natural do solo. Quando comparada com a matéria orgânica total do solo, a fração mais prontamente disponível, como o carbono orgânico dissolvido (COD), é mais sensível às mudanças no manejo do solo a curto e médio prazo e, portanto, pode ser utilizada como indicador fundamental de qualidade do solo ou das alterações das condições naturais. Embora a fração dissolvida represente apenas uma pequena porção da matéria orgânica total do solo, o COD é móvel no solo e constitui uma importante fonte de C para os microorganismos, podendo facilmente refletir os efeitos de diferentes sistemas de manejo. Inúmeros métodos são utilizados para caracterizar o COD, mas os processos que influenciam sua mineralização e a disponibilidade dos elementos associado com a matéria orgânica (N, P, e S) ainda não são completamente entendidos. Pesquisas futuras devem buscar entender os processos que governam a dinâmica de nutrientes e do COD e como os mesmos afetam a qualidade do solo.Soil quality has become an important issue in soil science. Considerable attempts have been made to define soil quality, but a general concept has not yet been accepted by the scientific community. The selection of quantitative indices for soil quality is extremely difficult, and a considerable number of chemical, physical, and biochemical properties have been suggested as potential indicators of soil quality. Because soil organic matter (SOM) can be associated with different soil chemical, physical and biological processes, it has been widely considered as one of the best soil quality indicator. Land use can significantly influence dynamics of organic carbon and N, P, and S cycle. However, changes in total soil organic carbon (SOC) contents in response to land use may be difficult to detect because of the natural soil variability. In the short to medium term, biological properties and readily decomposable fractions of SOC, such as dissolved organic carbon (DOC), are much more sensitive to soil management than is SOM as a whole, and can be used as a key indicator of soil natural functions. Despite the fact that labile C accounts for a small portion of the total organic matter in the soils, DOC is the most mobile and important C-source for microorganisms, and can easily reflect the effects of land use on soil quality. Although several methods are used to characterize DOC, the factors influencing mineralization and bioavailability of elements associated with organic matter (N, P, and S) remains unclear. Future research should focus on the processes that govern DOC and nutrient dynamics and how they affect soil quality
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie