14 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Análise histoquímica foliar do amendoim: genótipos 'Tatu' e SO-909 Leaf histochemical analyses of peanut: genotypes 'Tatu' and SO-909

    No full text
    Este trabalho teve por finalidade a análise histoquímica foliar de dois genótipos de amendoim (Arachis hypogaea L.), do tipo botânico Valência: SO-53 ('Tatu') e SO-909 (PI-259747), cuja literatura demonstra apresentarem respostas diferentes de resistência às principais moléstias fúngicas foliares do Brasil. Seções transversais das seguintes estruturas - pulvino, haste peciolar, raque, pulvínulo e folíolo - e seções paradérmicas de folíolos coletados em dois anos agrícolas consecutivos, foram analisadas quanto à presença de alcalóides, amido, calose, celulose pura, celulose com pectina, cera, cristais, cutina, lignina, mucilagem, óleo, resina, tanino e ureídeos (micrograma) por folíolo (grama). As diferenças qualitativas histoquímicas observadas nos diversos tecidos, como a freqüência de tanino, alcalóide, pectina e óleo, supostamente, podem ser responsáveis pela resistência ou suscetibilidade dos genótipos às moléstias fúngicas foliares. Para fins de caracterização, mostrou-se eficiente a avaliação de pureza de celulose.<br>Leaf histochemical analyses were made in two genotypes of Arachis hypogaea L., of the Valencia group, which present different responses to some of the peanut foliar diseases. The analyses were performed on cross sections of the pulvini, petiole, rachis, pulvinulus and leaflets. The following constituents were observed: alkaloids, callose, cellulose with pectin, cristal, cutin, lignin, mucilage, oil, pure cellulose, resin, starch, tannin, wax and weight of ureides by leaflets. Some histochemical characteristics such the amount of tannin, alkaloids, pectin and oil can be produce different responses of peanut to foliar fungal diseases, and can be used in the characterization of peanut genotypes like the amount of pure cellulose and cellulose with pectin

    Pharmacoepidemiology

    No full text
    corecore