1,344 research outputs found
Is weak temperature dependence of electron dephasing possible?
The first-principle theory of electron dephasing by disorder-induced two
state fluctuators is developed. There exist two mechanisms of dephasing. First,
dephasing occurs due to direct transitions between the defect levels caused by
inelastic electron-defect scattering. The second mechanism is due to violation
of the time reversal symmetry caused by time-dependent fluctuations of the
scattering potential. These fluctuations originate from an interaction between
the dynamic defects and conduction electrons forming a thermal bath. The first
contribution to the dephasing rate saturates as temperature decreases. The
second contribution does not saturate, although its temperature dependence is
rather weak, . The quantitative estimates based on the
experimental data show that these mechanisms considered can explain the weak
temperature dependence of the dephasing rate in some temperature interval.
However, below some temperature dependent on the model of dynamic defects the
dephasing rate tends rapidly to zero. The relation to earlier studies of the
dephasing caused by the dynamical defects is discussed.Comment: 14 pages, 6 figures, submitted to PR
Flavour Universal Dynamical Electroweak Symmetry Breaking
The top condensate see-saw mechanism of Dobrescu and Hill allows electroweak
symmetry to be broken while deferring the problem of flavour to an electroweak
singlet, massive sector. We provide an extended version of the singlet sector
that naturally accommodates realistic masses for all the standard model
fermions, which play an equal role in breaking electroweak symmetry. The models
result in a relatively light composite Higgs sector with masses typically in
the range of (400-700)~GeV. In more complete models the dynamics will
presumably be driven by a broken gauged family or flavour symmetry group. As an
example of the higher scale dynamics a fully dynamical model of the quark
sector with a GIM mechanism is presented, based on an earlier top condensation
model of King using broken family gauge symmetry interactions (that model was
itself based on a technicolour model of Georgi). The crucial extra ingredient
is a reinterpretation of the condensates that form when several gauge groups
become strong close to the same scale. A related technicolour model of Randall
which naturally includes the leptons too may also be adapted to this scenario.
We discuss the low energy constraints on the massive gauge bosons and scalars
of these models as well as their phenomenology at the TeV scale.Comment: 22 pages, 3 fig
An assessment of Evans' unified field theory I
Evans developed a classical unified field theory of gravitation and
electromagnetism on the background of a spacetime obeying a Riemann-Cartan
geometry. This geometry can be characterized by an orthonormal coframe theta
and a (metric compatible) Lorentz connection Gamma. These two potentials yield
the field strengths torsion T and curvature R. Evans tried to infuse
electromagnetic properties into this geometrical framework by putting the
coframe theta to be proportional to four extended electromagnetic potentials A;
these are assumed to encompass the conventional Maxwellian potential in a
suitable limit. The viable Einstein-Cartan(-Sciama-Kibble) theory of gravity
was adopted by Evans to describe the gravitational sector of his theory.
Including also the results of an accompanying paper by Obukhov and the author,
we show that Evans' ansatz for electromagnetism is untenable beyond repair both
from a geometrical as well as from a physical point of view. As a consequence,
his unified theory is obsolete.Comment: 39 pages of latex, modified because of referee report, mistakes and
typos removed, partly reformulated, taken care of M.W.Evans' rebutta
International, collaborative assessment of 146 000 prenatal karyotypes: expected limitations if only chromosome-specific probes and fluorescent in-situ hybridization are used
The development of chromosome-specific probes (CSP) and fluorescent in-situ hybridization (FISH) has allowed for very rapid identification of selected numerical abnormalities. We attempt here to determine, in principle, what percentage of abnormalities would be detectable if only CSP-FISH were performed without karyotype for prenatal diagnosis. A total of 146 128 consecutive karyotypes for prenatal diagnosis from eight centres in four countries for 5 years were compared with predicted detection if probes for chromosomes 13, 18, 21, X and Y were used, and assuming 100% detection efficiency. A total of 4163 abnormalities (2.85%) were found including 2889 (69.4%) (trisomy 21, trisomy 18, trisomy 13, numerical sex chromosome abnormalities, and triploidies) which were considered detectable by FISH. Of these, 1274 were mosaics, translocations, deletions, inversions, rings, and markers which would not be considered detectable. CSP-FISH is a useful adjunct to karyotype for high risk situations, and may be appropriate in low risk screening, but should not be seen as a replacement for karyotype as too many structural chromosome abnormalities will be misse
Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia
Resistance to L-asparaginase in leukemic cells may be caused by an
elevated cellular expression of asparagine synthetase (AS). Previously, we
reported that high AS expression did not correlate to L-asparaginase
resistance in TEL-AML1-positive B-lineage acute lymphoblastic leukemia
(ALL). In the present study we confirmed this finding in TEL-AML1-positive
patients (n = 28) using microarrays. In contrast, 35
L-asparaginase-resistant TEL-AML1-negative B-lineage ALL patients had a
significant 3.5-fold higher AS expression than 43 sensitive patients (P <
.001). Using real-time quantitative polymerase chain reaction (RTQ-PCR),
this finding was confirmed in an independent group of 39 TEL-AML1-negative
B-lineage ALL patients (P = .03). High expression of AS was associated
with poor prognosis (4-year probability of disease-free survival [pDFS]
58% +/- 11%) compared with low expression (4-year pDFS 83% +/- 7%; P =
.009). We conclude that resistance to l-asparaginase and relapse risk are
associated with high expression of AS in TEL-AML1-negative but not
TEL-AML1-positive B-lineage ALL
Drag and jet quenching of heavy quarks in a strongly coupled N=2* plasma
The drag of a heavy quark and the jet quenching parameter are studied in the
strongly coupled N=2* plasma using the AdS/CFT correspondence. Both increase in
units of the spatial string tension as the theory departs from conformal
invariance. The description of heavy quark dynamics using a Langevin equation
is also considered. It is found that the difference between the velocity
dependent factors of the transverse and longitudinal momentum broadening of the
quark admit an interpretation in terms of relativistic effects, so the
distribution is spherical in the quark rest frame. When conformal invariance is
broken there is a broadening of the longitudinal momentum distribution. This
effect may be useful in understanding the jet distribution observed in
experiments.Comment: 30 pages, 5 figures, references added, minor corrections. To be
published in JHE
Naked Singularity Formation In f(R) Gravity
We study the gravitational collapse of a star with barotropic equation of
state in the context of theories of gravity.
Utilizing the metric formalism, we rewrite the field equations as those of
Brans-Dicke theory with vanishing coupling parameter. By choosing the
functionality of Ricci scalar as , we
show that for an appropriate initial value of the energy density, if
and satisfy certain conditions, the resulting singularity would be naked,
violating the cosmic censorship conjecture. These conditions are the ratio of
the mass function to the area radius of the collapsing ball, negativity of the
effective pressure, and the time behavior of the Kretschmann scalar. Also, as
long as parameter obeys certain conditions, the satisfaction of the
weak energy condition is guaranteed by the collapsing configuration.Comment: 15 pages, 4 figures, to appear in GR
Quantum Fluctuation Relations for the Lindblad Master Equation
An open quantum system interacting with its environment can be modeled under
suitable assumptions as a Markov process, described by a Lindblad master
equation. In this work, we derive a general set of fluctuation relations for
systems governed by a Lindblad equation. These identities provide quantum
versions of Jarzynski-Hatano-Sasa and Crooks relations. In the linear response
regime, these fluctuation relations yield a fluctuation-dissipation theorem
(FDT) valid for a stationary state arbitrarily far from equilibrium. For a
closed system, this FDT reduces to the celebrated Callen-Welton-Kubo formula
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
- …