24,327 research outputs found

    Interlaminar stresses in composite laminates: A perturbation analysis

    Get PDF
    A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest

    A limiting analysis for edge effects in angle-ply laminates

    Get PDF
    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses

    Preliminary assessment of systems for deriving liquid and gaseous fuels from waste or grown organics

    Get PDF
    The overall feasibility of the chemical conversion of waste or grown organic matter to fuel is examined from the technical, economic, and social viewpoints. The energy contribution from a system that uses waste and grown organic feedstocks is estimated as 4 to 12 percent of our current energy consumption. Estimates of today's market prices for these fuels are included. Economic and social issues are as important as technology in determining the feasibility of such a proposal. An orderly program of development and demonstration is recommended to provide reliable data for an assessment of the viability of the proposal

    A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    Get PDF
    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production

    A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code

    Majorana zero modes in a quantum Ising chain with longer-ranged interactions

    Full text link
    A one-dimensional Ising model in a transverse field can be mapped onto a system of spinless fermions with p-wave superconductivity. In the weak-coupling BCS regime, it exhibits a zero energy Majorana mode at each end of the chain. Here, we consider a variation of the model, which represents a superconductor with longer ranged kinetic energy and pairing amplitudes, as is likely to occur in more realistic systems. It possesses a richer zero temperature phase diagram and has several quantum phase transitions. From an exact solution of the model these phases can be classified according to the number of Majorana zero modes of an open chain: 0, 1, or 2 at each end. The model posseses a multicritical point where phases with 0, 1, and 2 Majorana end modes meet. The number of Majorana modes at each end of the chain is identical to the topological winding number of the Anderson's pseudospin vector that describes the BCS Hamiltonian. The topological classification of the phases requires a unitary time-reversal symmetry to be present. When this symmetry is broken, only the number of Majorana end modes modulo 2 can be used to distinguish two phases. In one of the regimes, the wave functions of the two phase shifted Majorana zero modes decays exponentially in space but but in an oscillatory manner. The wavelength of oscillation is identical to the asymptotic connected spin-spin correlation of the XY-model in a transverse field to which our model is dual.Comment: 11 pages, 8 figures; brief clarifying comments added; few new references; this version is accepted in Phys. Rev.

    Sagnac Interferometer Enhanced Particle Tracking in Optical Tweezers

    Full text link
    A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enhancement factor increases asymptotically as the interferometer visibility approaches 100%, but is capped at a maximum given by the ratio of the trapping field intensity to the detector saturation threshold. For an achievable visibility of 99%, the signal-to-noise ratio is enhanced by a factor of 200, and the minimum trackable particle size is 2.4 times smaller than without the interferometer

    SELECTIVE TRANSLATION OF T4 TEMPLATE RNA BY RIBOSOMES FROM T4-INFECTED Escherichia coli

    Full text link

    Unitarity and the Hilbert space of quantum gravity

    Full text link
    Under the premises that physics is unitary and black hole evaporation is complete (no remnants, no topology change), there must exist a one-to-one correspondence between states on future null and timelike infinity and on any earlier spacelike Cauchy surface (e.g., slices preceding the formation of the hole). We show that these requirements exclude a large set of semiclassical spacetime configurations from the Hilbert space of quantum gravity. In particular, the highest entropy configurations, which account for almost all of the volume of semiclassical phase space, would not have quantum counterparts, i.e. would not correspond to allowed states in a quantum theory of gravity.Comment: 7 pages, 3 figures, revtex; minor changes in v2 (version published in Class. Quant. Grav.
    • …
    corecore