@ https://ntrs.nasa.gov/search.jsp?R=19760024213 2020-03-22T12:48:40+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



“_‘

N76-31301

(XASA-CR-148813) A LIMITING ANALYSIS FOR

EDGE EFFECTS IN ANGLE-PLY LANINATES

(virginia Polytechnic Inst. and State Univ.)
34 p HC $48.00 CSCL 11D Unclas
: 03047

¥

"



College of inmin?
Virginiz Pol hnic Institute and State University
Blacksburg, Virginia 24061

VPI-E-76-18 September, 1976

A Limiting Analysis for Edge Effects
in Angle-Ply Laminates
Peter W. Hsu
Carl T. Herakovich

Department of Engineering Science and Mechanics

Supported by NASA Grant NGR 47-004-090 and 47-004-129.



. T e e

TP O Ly R R

OATA |1 Report No. I'I. T3, Recipient's Accession No.

SHEET VP1-E-76-18
le and Subtitle n‘!’."p!'“ 1976
3

A Limiting Analysic for Edge Effects in Angle-Ply Laminates

V" 4su and Car! T. Herskovich W Joriovmiag Degealuation Koy

-E-76-18
[7. Perlorming Organization Name and Address To. mw;&&m—
vn-?im Polytechnic Institute and State University
Engineering Science and Mechanics [T1. Contract/Grant No.

Blacksburg, Virginia 24061 NGR 47-004-090

12, Sponsoring Organization Name and Address

National Aeronautics & Space Administration
Langley Research Center

Hampton, Virginia 23665 "

15. Supplementary Notes

13, Type of Report & Per
" Covered

16. Abstracts

see page 1
mmut Analysis, VJa, Descriptors

Composites, laminates, edge effects, interlaminar stresses, graphite/epoxy,
pérturbations

17b, ldentifiers/Open-Ended Terms

17¢. COSATI #ield /Group

78, Availability Statement W. Sccurity Class (Vhis 21. No. of Pages
Report) N\ 35
Distribution Unlimited Security Class (This 22, Price
e
"FORM NTIE 3¢ (NEV. 10-78) ENDORSED BY ANSI AND UNESCD.  THIS FORM MAY BE REPRODUCED USCOMM.DC 8268-P74




—— —

INSTRUCTIONS FOR COMPLETING FORM NTIS-35 (Bibliographic Data Sheet based on COSATI
Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government,

PB-180 600).

L Report Number. Each individually bound report shall carry a unique alphanumeric designation selected by the performing
crganization or provided by the sponsoring organization. Use uppercase letters and Arabic numerals only. Examples
FASEB-NS-73-87 and FAA-RD-73-09.

2. Leave blank.
3 Recipiont’s Accession Number, . Reserved for use by each report recipient.

4, Title ond Subtitle. Title should indicate cleatly and briefly the subject coverage of the report, subordinate subtitle to the
main title, When a report is prepared in more than one volume, repeat the primary title, add volume number and include
subtitle for the specifie volume,

S Report Dote. Fach report shall carry a date indicating at least month and year. Indicate the basis on which it was selected
(e.g+y date of issue, date of approval, date of preparation, date published).

6. Performing Organizetion Code. Leave blank.

7. Avthor(s). Give name(s) in conventional order (¢.5., John R, Doe, or ).Robert Doe), List author's affiliation if ic differs
from the performing organization.

8. Performing Orgonization Report Number. - Insert if performing organization wishes to assign this number,

9. Performing Orgonization Nome ond Mailing Address. Give name, street, city, state, and zip code. List no more than two
levels of an organizational hierarchy. Display the name of the organization exactly as it should appear in Government in-
dexes such as Government Reports Index (GRI).

10. Project/Task/Work Unit Number, Use the project, task and work unit numbers uncer which the revort was prepared.

1% Contrect/Grent Number. Insert contract or grant number under which report was prepared.
12. Sponsoring Agency Name ond Mailing Address. lnclude zip code. Cite main sponsors,
13. Type of Report ond Period Covered. State interim, final, ete., and, if applicable, inclusive dates.

14 Sponsering Agency Code. Leave blank,

15. Supplementery Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with. ..
Translation of . . . Presented at conference of . . . To be published in . .. Supersedes... Supplements . . .
Cite availability of related parts, volumes, phases, etc. with report number.

16. Abstrect. Include a brief (200 words or less) factual summary of the most significant information contained in the roport.
If the report contains a significant bibliography or literature survey, mention it here.

17. Key Words ond Document Anolysis. (a). Descriptors. Select from the Thesaurus of Engineering and Scientific Terms the
proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used

as index entries for cataloging.

(b). Identifiers and Open-Ended Terms. Use identifiers for project names, code names, equipment designators, etc. Use
open-ended terms written in descriptor form for those subjects for which no descriptor exists.

(¢} COSATI Field/Group. Field and Group assignments are to be taken from the 1964 COSATI Subject Category List.
Since the majority of documents are multidisciplinary in nature, the primary Field /Group assignment(s) will be the specific
discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary

Field/Group assignments that will follow the primary posting(s).

18. Distribution Statement. Denote public releasability, for example ''Release unlimited’’, or limitation for reasons other
than security. Cite any availability to the public, other than NTIS, with address; order number and price, if known.

19 & 20. Security Classification. Do not submit clasrified reports to the National Technical Information Service.

21, Number of Pages. Insert the total number of pages, including introductory pages, but excluding distribution list, if any.

22. NTIS Price. Leave blank.

USCOMM-OC s2e8 P74

FORM NTiS-38 (REV. 10-73)

Mﬂ_...__ e A _.:.___ A,.



s — I AN

i ma p— -

SN WSS — - T R e = o " VR e L P E I ST ARSI — S V. G P e Y

A LIMITING ANALYSIS FOR EDGE EFFECTS IN ANGLE-PLY LAMINATES'
Peter W. Hsu & Carl T. Herakovich
Wi T, K L
Blacksburg, Virginia 24061
ABSTRACT

This paper develops a zeroth-order solution for edge effects in angle-ply
composite laminates using perturbation techniques and a 1imiting free body
approach. The general method of solution for [t6] laminates is developed and
then applied to the special case of a [145]‘ graphite/epoxy laminate. Inter-
laminar stress distributions are obtained as a function of the laminate thick-
ness-to-width ratio h/b and compared to existing numerical results. ;

The solution predicts stable, continuous stress distributions, determines
finite maximum tensile interlaminar normal stress 9, for both [:e]' and [33]s
laminates, and provides mathematical evidence for singular interlaminar shear

stresses 'I‘xz and ‘ryz .
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Introduction:

Recent numerical [1-6] and experimental [7-10] investigations have
demonstrated the free edge effect in composite laminates subjected to remote
tension. Such effect has been suggested to play the dominant role in the de-
lamination failure initiation of some laminates. In an attempt to obtain more
accurate free edge stress intensitites the problem of uniaxial extension of thin,
elastic, balanced, symmetric, bidirectional laminates was investigated in an
earlier paper [11] based upon a perturbation analysis [12,13]. A key feature
of the analysis was the force and moment equilibrium of a 1imiting free body
containing the interfacial plane between two layers. The interlaminar stresses
thus obtained were compared with the finite difference solution of Pipes [6].
It was shown that the perturbation solution provides better results for the
stress behavior near the free edge of the laminate.

The present paper presents a similar analysis for angle-ply laminates by
perturbing the three coupled dimensionless partial differential equations
resulting from a displacement formulation.

Governing Equations

For the balanced, symmetric 2m layer laminate of Fig. 1, the displacement

functions take the following forms [2]:

u= g+ Uz (a)
v =V(y,z2) (b) (1)
weHWy.z) (c)

where ¢ 1is the applied axial strain and Uly,z), V(y,z), and W(y,z) are three

unknown functions.
The dimensionless displacement equilibrium equations (with zero body forces)

[14] are



(Qgg (M/0)2U,yy + Qgslsgy + Qg (n/D)2V,yy + QusViy,
+ (36 + o.;)(r./b)u.")"" .0

(06 (W/0)2Unyy *+ Qagligy + Qa2(W/BI2Vy + QagVy, (2)
+ (g3 + Qgq) (/BN = 0

((Qgs *+ Q3g) (W/D)Uoyy + (Qaq + Q23) (W/B)Vsy,
+ Qaa(h/D)2Myy + Qgaiigy}{K) = 0

where Q‘k) - c(*)/cﬁf’ with c“’ being the transformed stiffness coefficients
of the nurm properties fm the natural coordinates to the xy coordinate?,
and c(“’ the largest stiffness coefficient of the kth layer. i = y/b, L= 2/h
are the dimensionless coordinates, and U = U/h, V = V/h, and W = W/h are the
dimensionless unknown displacement functions. Symietry conditions lead to [14]

U(Y,2) = U(Y,-2) (a)
v(Y,Z) = v(Y,-Z) (b)
R{v,2) = WY,-2) (c)
u(y,z) = -1{-y,2) (d)
V(Y,2) = -V(-¥,Z) (e)
W(Y,2) = W(-v,Z) (f)

(3)

which yield the following symmetry constraints on the displacement functions:

(U,,(y,00{™ = 0
(V,y(y, 0™ = 0 (4)

{H(ylo)}(m) =0

w(o,2*) = 0
{V(Ool)}(k) =0 (5)

{H.y(O.z)}(k) =0
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where m denotes the layer adjacent to the midplane Z = 0, and arbitrary layers

are denoted by k.
The appropriate stress free houndary conditions can be expressed as:

o¥)a1,2) - 2%, Efl Vay(21,2) + EF' Nogl21,2) + 280, (41,2000 (a)
Wer,2) « g5, 8 v.,m.f* e u.,m.z) 86,1200 (b)(6)
o$&)(1,2) - By, (21,2) + By, (,2) + 4By, (1,2 KDeo (c)

along the free edges, and
oMren) = B2+ By, (1) + Byt + Buyy Mo ()
D(r,e1) « ‘T Vop(Y,21) + Wy (1) 6 ?,“! Uy (1,213 (e 0 (b)(7)

e (r,e1) = (v, (v,e1) ¢ BBy, (v,01) ¢ By, (v,e (e 0 (c)

on the top and the bottom surfaces.

To solve the boundary value problem defined by Equations (2) and (4)-(7),
only the first quadrant of the YZ-plane needs to be considered due to the favor-
able symmetry of the laminate. Recognizing that .he boundary layer effect exists
near the free edge Y = 1, the perturbation solution is sought by considering two
regions of the laminate: the interior region (away from the free edge) and the
boundary layer region (near the free edge).

Perturbation Solution

(1) The interior region (0sY<1)

In this region the free edge stress boundary conditions (6) are dropped and
attention is focused on the solution to Equations (2) subject to Equations (4),
(5) and (7). To seek a straight forward asymptotic expansion, let
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U(k) = ; tnu“(k)(Y|Z)
n=0

k) o p MKy, (e)
n=0

W) o M (K)(y,2) k*1,2,3,...,m

whera the subscript 1 denotes the interior region and the small parameter c(<<1)
represents the thickness-to-width ratio h/b. Substituting these expansions into
Equations (2) and equating coefficients of equal powers of ¢ to zero result in
infinite sets of equations. The zeroth-order equations take the form

K
0 {05500.22 * OasVo.zz}:k: =0
{045Uo.zz + QagVo,zz} "0 (9)
{033"0.11 (k) = 0

As a result of the symmetry conditions (3), Equations (9) have solution
in the form

Uo(k) o Botk)(v)

v, (K = o (K)y) (10)
K

(0 g (K

where B(g)(v). D(:)(Y). E(:) must satisfy the vanishing stress conditions to
recover the lamination theory in this interior region. That is,

¢ c c
(Cqq, (1-c)V/n + B0 (v) + Fe v+ g (1))(K .o (1)
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which are in effect generalizations of Equations (7a) which satisfy the symmetry
constraints (4) and (5). The nonzero central plane stresses are now required to
satisfy the equilibrium conditions (Fia. 2):

"/ m 0 k
(s omm)e n ] 7 € p0-0m 6O,

(k) (k)
Cao Ky LU
¥ u:1 - B of,"’(v) + k:‘ LS l‘:"(v)‘ =0 (12)
m
L

m c
u-;("(‘;)“"’”‘l)' Wz ©g-am ¢ 32 6)Wng,

k (k)
+ : Eig—)h-'o(:)(v) + : Eﬂr"ls(:)h)‘- 0 (13)

k=1 k="

Enforcing exact displacement continuities in U and V across each interface,

ylelds

B (¥) = Bo(z)(V)_' coee » BN (Y) « By(Y) (14)
0o () = 0{21(1) = L. ® DTN - (M) (15)

These equations reduce Equations (11)-(13) to m+2 equations for the m+2 unknowns
BO(Y). ﬂo(Y). E(g). The solution to these reduced equations uniquely determines
the zeroth-order interior region solution (10). This is the solution from
lamination theory as will be demonstrated later for a four layer angle-ply
laminate.

It is important to note that although exact displacement continuity in W was

not imposed in the interior region, it will be shown to be satisfied automatically

for angle-ply laminates.
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(2) The boundary layer region (Y=1)
Introducing the stretching transformation

ne (1-v"§) (16)

near the free edge Y = 1 to the governing equations (2) results in the following
equations:

{QggUsnn * Q55Us22 * Q26Vsnn * 0q5Vszz - (Q36 * Qqs)ﬂ.nz}(k) * 0 (a)

(QpgUsnn + QsYszz * Q22Venn * QaaVozz - (G23 * QgaMWonz?®) = 0 () (17)

(k)
(-(Qgs *+ Q36)Usnz = (Qaq * Q3)Vonz * Qug¥enn * Qaa¥zz} " = 0 ()
To secek a solution which satisfies the symmetry conditions (3), the constraint

equations (4), and the asymptotic recoveiy of the lamination theory for large n,
the following expansions are assumed:

k A
N R T T L
V(:) n-o [D,(Y) +R o cos unZ](k) ¢" (18)

ulk) - p (2 + S, 2 s 0,22} "
n=0

where B(t) D(k) E(k) are the interior region solution given by Equations (11)-
(15), P(k) R‘k) and s(*’ are undetermined coefficients, and n(k) are undetermined
positive quantities (in radians). The subscript b denotes the boundary layer

region.
Substituting Equations (18) into Equations (17) and reglecting nigher-order

terms results in the following set of three simultaneous algebraic equations

corresponding to the order e%:



(m“‘oz 5 st"oz”o » (stioz " 045032)% - (Q3 * 045)10:.050)“) =0

((QZGloz - Q45¢°2)P° * (sz‘oz . quuoz)ﬂo - (Qpy ¢ 044)a°cos°)‘“’ =0 (19)
((Qgs + O36)20%P0 * (%4 * Qa3)AgaoRy * (Quado’ - Og3002)50 ) = 0

k . ‘.2'---..

For each nontrivial term of Equations (18) to exist the determinants of the
algebraic equations (19) must vanish individually. This leads to a sixth-order
algebraic equation for each layer which can be regarded as a third-order equation
by classical treatment [156]. The six roots may be expressed as

(g1:2) = ¢ 7 ag) (¥
(g(3,8) = ¢ B ag){¥) (20)
(g(5:6) = ¢ € ag)(®)

where im. 6(K), 2(k) ape three constants in terms of the material
properties of the kth layer. For matching considerations, however, the
positive roots must be dropped since they lead to exponential growth of the
displacement, strain and stress fields for large n (or small Y). Hence, the
zeroth-order expansions of Equations (18) take the following general form:

U(E) = {Bo(Y) + (910'-‘-"0“ + Pzii“o“ + 935&"") cos ag l)m

V(:) . {Dy(Y) + (g];i-"o" + Rz;Fcon + R3;E°°") cos ag Zl(k) (21)

u(g) = (Eql + (516-'-“0“ + 5255“0" + s,iE“°”) sin ag Z)(”
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where 'o has been replaced by P'. Pz. 93. etc.

It may be shown that due to the separate variable nature of Equations (21),
no exact satisfaction of the free edge stress boundary conditions (6a) and (6b)
(for al1 Z) and the stress boundary conditions (7) on the top and bottom sur-
faces (for all Y) can be achieved. By arguing that higher-order term: serve
as correction terms, attention can now be focused on points (n=0,Z, +c) and
(n-o.lk-c) on the free edge (Fig. 3). That is, requiring exact satisfaction
of the boundary conditions (6a,6b,6¢c) at these points only [11,14] with
Equations (21) and considering the resulting force and moment equilibrium
of the 1imiting free body of thickness 2¢ (0<z<<<1) result in the algebraic
equations:

([:“(iv,mfé?,) + c22(5a1+m2+6a3)
+ C23($]+$z+53)JGOCOS(no(Zktc)) (a)

, ¢ ¢ ;
Lo e Pey ooy (1) e oy (oY

{[c66(5P1+592+EP3) + czs(ia,+ﬁaz+éna}

+ 035(51+$2+53)]uocos(ao(zk:;)) (b)(22)
c
o - [ cygllesley 4 ° R ANCIEE T NAH UL
(Caql(Ry#R#R3) = (S,45,B45,E)] + Cyg(Py+P,#P5)) (K) = 0 (c)

k = ].2.----.-.]’.

Note that the right hand sides of Equations (22a) and (22b) are all known
quantities from the interior region solution. Solving nine equations (three
from (17a), three from (17b) and three boundary conditions (22a)-(22c)) leads
to the determination of the nine unknown coefficients Pi' Ri' s1 (1=1,3) in
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terms of .‘:’. The validity of the solution thus obtained can be readily
checked by the self-equilibrating condition of the stress resultant

-
[ 0, dy » 0 (23)

o
for any level of Z. Finally,equating the force and moment resulting from the
boundary layer displacement fields (21) with the interior region stress
resultants determines the values of c(:)((zk:c)) to their order of accuracy.
Thus, the "near-interlaminar” stress distributions can be obtained based upon
a reference layer. It should be noted that displacement continuity in this
boundary layer region has not yet been imposed as a physical requirement.

It will be imposed subsequently in a numerical example.
Four Layer Angle-PLy Laminates

For advanced fiber-reinforced composites having three mutually perpendicu-
lar planes of elastic symmetry, the stiffness coefficients ng’ vanish. For a
four laver angle-ply laminate with symmetric [t6] orientations (Fig. 4a), the
following relations between material constants (with respect to xyz coordinates)

are found to exist [14]
Cigl) . °1§2) » 1=1232ndj=1,2,3

et e f® . keass

ot - -6t L ne1,2,3

The zeroth-order inteior region solution (10) yields
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UO(‘) = UO(Z’ s (I)
(C22C33 - C23C23)
1
2 , _ (€12 - C12623)"
(CaCa3 - Ca3t2)

(24)

'0(‘) = votz) e

)r 2(1-¢)
£x
uo(]) = Ho

It can be seen from (24) that the exact continuity in W results automatically.
On the central plane (Y=0), the stresses are obtained by combining
Equations (24), the constitutive equations, and the strain-displacement re-

lations. The results are

oy{1(0,2) = oy(2)(0,2) = 0 (2)

: (25)
T”(”(ooz) .. fxytz’(o'z)

- [ .%d%fn-cnﬁf*cu“uﬁz'“fnqukgnqw)
16 (C22C33 - C23C23)

which indicates that the lami.ation theory (or the zeroth-order interior
region solution) contributes no normal stress along the central plane Y=0.
For equilibrium considerations the interlaminar shear stress resultant and
thr couple moment due to the interlaminar normal stress o, should both be
expected to vanish (Fig. 5). Thus, two more self-equilibrating conditiuns
are established, in addition to Equation (23), as

b
(26)
= 0
Jome
b _ :
[oozvreo (27)



n

where 1,‘
(16-22) with k=1,2,
Numerical example

(1) [45/-45]. graphite-epoxy laminate

Consider the [45/-45]. graphite-epoxy laminate of constant layer thickness

h/2 (Fig. 4a). The material properties are

Eyy= 20 x 10 (psi)

£y ¢ s 5000 10%(ps1)

6,5 * Gpy = Gy3 = 0.85 x 10%(pst)

S o o wma
The transformed stiffness coefficients are

a5(x 1076 psi)
¢§1 = 6.745

¢, 5 = 5.05

(M
C3 = 0.521

(M .M,
Cig = Cpg ' = -4.506

(1) .
036 -0.04387

(1) (1) "
C44 = css = (0.5

1
csé ) < 5.3

1
°4§ ) a0

= 0.21

-45(x 106 psi)

¢,{) = 6,748
6,32 = 5.045
¢, ?) - 0.521
¢, %) = 6,745
C,32) = 0.521

(2) _
Lyg = 2.213

(2) (2)

Cig ' ® Cog = 4.506
(2) _

Cyg ) = 0.04387
(2) (2)

s -0

(2) ,
Cge = = 5.33

(2)
Coy =0

0.85

and o, are both determined by solving the boundary layer equations

(28)

(29)

T RIS,



12

The interior solution (24) yields

Uo(‘) i uo(2) .0
Vo1 = vo(?) = 07433 ¢, P Y(1-e) (30)
Ho'!) = uy(2) o -0.0608 £,2 (1-¢)

which lead to the central plane stresses

{100,2) = - «2(0,2) = 1,184 £, (1-¢) (10%ps1)

(31)
o(0,2) = - o2(0,2) = 0

The boundiry layer equation (17-19) yield two identical sixth-order algebraic

equations [14] which give three pairs of real roots. For matching considerations

only the three negative roots are taken. Finally the composite solution (in
the perturbation sense) is formed as

- -8 .
uc(k) 5 ((91.“°°n + Pye 2%" , P30s3°°n)cos uoz}(k)

=8.0._1 =Bya.n
%“’--mnnzﬂhd%v+uq.‘°+nf2°

+ Rj;.3°°n)cos uoz}(k)

-Bqagn =Bpa,n
MK = - 0.0604 £ (1-c)2 + (5,0 O + 5,020

+ Sa;asuon)l"‘ GOZ)(k) (32)
where

8 *) = 1.2360
az(k) = 0.2903
85(K) = 0.9659




Exact satisfaction of the governing equations and the boundary conditions at

points (n=0,1/2+z) and (a=0,1/2-c) leads to the following equations:

p{1) = - 0.587 ¢
p{1 = 0.1707 ¢,
Pal1) = 1.2021 o
Ry (1) = - 0.6309 ¢
R(1) = - 0.1813 o
Rg{1) = 1.1897 oy
(1) = 11388 4,
s,{1) = 0.0347 4

s5¢1) = - 1.0736 ¢

2
P () = 0.587 4,
2)

P2 « - 0.1707 4
py() = - 1,2021 oy
R ?) « - 0.6309 ¢
Ry(2) = - 0.1813 o,

Ry'2) = 1.1897 ¢
5,(2) = 1.1388 o,
5,(2) «  0.0347 ¢,

1.0736 ¢,

Ex (1-¢)

¢ * uo(ncos(-%n)(‘% .

))

o1

g (1-¢)

‘ =
¢ uo(zrcos(ao(z’(,}-_

))
0 ¢ ¢e< )

Lh

(33)

(34)

It can be shown that these coefficients lead to identical satisfaction of the
self-equilibrating conditions (Equations (23 and (26)) when the lower limit

is replaced by infinity - the corresponding zeroth-order domain of the




4
interior region. Furthermore, requiring the force equilibrium condition

f: o) (v, 1220 ay 4 oY) (0,2) o0

5 (K)
tan -%t 3

leads to

(k)

¢° ) = 0.5 (0 < ¢ <<< 1) (35)
W)

(1]

Now consider Equations (32) and (33). It 1s clear that Layer 1 (+45°)
and Layer 2 (-45°) are antisymmetric in U and symmetric in both V and W with
respect to the infinitesimal thin slice (Fig. 4d). Upon enforcing exact
continuity in displacement U, V, W at Z = 1/2, the following equation is
obtained

1im cos :g(‘—)' + comc = 1im cos :gﬂ - uomc =0 (36)
g+0 g+0
which ylelds
(1) (2)
cos Eﬂ,—* 4 "o(”] . cos[c-gz— - %(2) 0 (37)

for 0 < g <<< 1

1im
g0

aglt! (k
tan—°r: a, ): * - (38)




The interlaminar stresses based upon the lower layer (-45°) may now be ex-
pressed from the stress-displacement relations as

typ * (0.85 x 10%)(1-c),[-0.58715" -2364an 4 797502903

+ 1.202180- 96590300 (5. . og) (a)
typ ® (0.85 x 10%)(1-c)¢ [2.00508' 2364an 4 g, 1919402903
- 2,226380-%5%"10an(g. - o) ) (39)
0, = (1-c)e, (10)[2.138951-2364an , ¢, 047930 2903an
- 1.828130- 965%am) o
Ocgec<]

If the stacking sequence is reversed to [-45/45] , (Fig. de) the interlaminar
stresses become
tyg * (0.85 x 10°)(1-¢)e,[+0.58718! -236%an . g 170750-2903an

- 1.20218%-%5%3¢an(3 - ag) (a)

tyy * (085 x 10%)(1-¢ )¢, [2.03508" -2364an 4 g, 191330-2903an

- 2,226387- 9659 an (8 - o) (b) (40)

oy ® (1-c)e, (109)[2.13891 236400 4 g, 0475029030

H 1-323150'9659”‘] (c)
0<g<<<]

Results and Discussion
From Equaifons (39) and (4C) it is clear that the interlaminar shear

stresses LI and t__ are both proportional to the near singular value of

yz

Tutobe B Sttt i
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tan(i-- ag) which results from Equation (35 & 38). Hence a serves as a problem
parameter which may be more realistically determined experimentally. Figure

6 shows the influence of a on the interlaminar shear stress Tyz Obviously,
o becomes more singular as o 18 increased and may attain a much higher

finite maximum value at the free edge than the calculated finite difference
result of [3]° This 1s in agreement with the work of Pipes and Pagano (7]

in which they found that Tz tends to grow without bound. Figure 7 shows

the interlaminar shear stress vz as a function of the problem parameter

a. Although vz is proportional to the near singular value tan(% ~ag)
(0<g<<<l) it 1s zero at the free edge thus satisfying the stress free boundary
condition. It should be noted that 'yz

values of a. The negative-positive variation of

attains larger peak values, for higher
yz confirms the validity of
the self-equilibrating condition (26). The finite difference solution, however,
does not predict such variation. In a later paper, it will be shown that the
negative-positive variation agrees well with the finite element result by
Renieri [16] which further supports the present theory. The variation of the
interlaminar normal stress o, in Fig. 8 (Ean. 40c) indicates that the maximum
finite value of 9, at the free edge is independent of the problem parameter .
The only influence of a on Oy 1ies in the boundary layer width. The positive-
negative (tensile-compressive) variation of o, confirms the solution validity
by satisfying the self-equilibrating condition (23). The finite difference

results, on the other hand, indicate instability near the free edge [14].

The present theory (Eqns. (8) - (22)) is based upon the zeroth-order

analysis of the geometric ratio h/b. Hence the smaller h/b, the better the

* A1l finite difference reusits presented in this paper were obtained by
the authors using the program supplied by Professor Pipes.



-

1-

17

solution accuracy [14]. The effects of this ratio on the interlaminar stress
components can be observed in Figs. 9-11. In Fig. 9, for a smaller h/b, Tes
has a smaller boundary layer width while attaining a higher maximum value at
the free edge (for a fixed a). Similar behavior is found for Tve (Fig. 10)
where the stress attains a higher peak value and a smaller boundary layer
width for a smaller h/b. In Fig. 11, a higher % max
layer width are obtained for a smaller h/b. The interlaminar stress distri-
butions for the reversed stacking sequence [-45/45]‘ Gr/E are not plotted.
However it is important to point out [14] that only 1, experiences a sign
reversal when the stacking sequence is reversed. The sign of the remaining

and a smaller boundary

two components of interlaminar stress is not a function of the stacking
sequence. Thus for reliable design fo angle-ply laminates, the delamination
failure mode due to the tensile 9, at the free edge should always be taken

into consideration.

Conclusions

A method of solution for the problem of elastic, balanced, symmetric
laminates subject to uniaxial extension has been developed based upon the
perturbation theory. Attention has been focused on the force and moment
equilibrium for an infinitesimally thin slice containing the interfacial
plane. The solution provides better insight into the free edge interlaminar
stress behavior for thin angle-ply laminates (h/b<<1) than existing numerical

solutions.
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FIGURE |. LAMINATE GEOMETRY
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