49,486 research outputs found

    Quantum quench dynamics of the Bose-Hubbard model at finite temperatures

    Full text link
    We study quench dynamics of the Bose-Hubbard model by exact diagonalization. Initially the system is at thermal equilibrium and of a finite temperature. The system is then quenched by changing the on-site interaction strength UU suddenly. Both the single-quench and double-quench scenarios are considered. In the former case, the time-averaged density matrix and the real-time evolution are investigated. It is found that though the system thermalizes only in a very narrow range of the quenched value of UU, it does equilibrate or relax well in a much larger range. Most importantly, it is proven that this is guaranteed for some typical observables in the thermodynamic limit. In order to test whether it is possible to distinguish the unitarily evolving density matrix from the time-averaged (thus time-independent), fully decoherenced density matrix, a second quench is considered. It turns out that the answer is affirmative or negative according to the intermediate value of UU is zero or not.Comment: preprint, 20 pages, 7 figure

    Non-Extensive Quantum Statistics with Particle - Hole Symmetry

    Full text link
    Based on Tsallis entropy and the corresponding deformed exponential function, generalized distribution functions for bosons and fermions have been used since a while. However, aiming at a non-extensive quantum statistics further requirements arise from the symmetric handling of particles and holes (excitations above and below the Fermi level). Naive replacements of the exponential function or cut and paste solutions fail to satisfy this symmetry and to be smooth at the Fermi level at the same time. We solve this problem by a general ansatz dividing the deformed exponential to odd and even terms and demonstrate that how earlier suggestions, like the kappa- and q-exponential behave in this respect

    NIMBUS-5 sounder data processing system. Part 2: Results

    Get PDF
    The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented

    Calibration of shielded microwave probes using bulk dielectrics

    Full text link
    A stripline-type near-field microwave probe is microfabricated for microwave impedance microscopy. Unlike the poorly shielded coplanar probe that senses the sample tens of microns away, the stripline structure removes the stray fields from the cantilever body and localizes the interaction only around the focused-ion beam deposited Pt tip. The approaching curve of an oscillating tip toward bulk dielectrics can be quantitatively simulated and fitted to the finite-element analysis result. The peak signal of the approaching curve is a measure of the sample dielectric constant and can be used to study unknown bulk materials.Comment: 10 pages, 3 figure

    Modification of nucleon properties in nuclear matter and finite nuclei

    Full text link
    We present a model for the description of nuclear matter and finite nuclei, and at the same time, for the study of medium modifications of nucleon properties. The nucleons are described as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The model explicitly incorporates quark degrees of freedom into nuclear many-body systems and provides satisfactory results on the nuclear properties. The present model predicts a significant increase of the nucleon radius at normal nuclear matter density. It is very interesting to see the nucleon properties change from the nuclear surface to the nuclear interior.Comment: 22 pages, 10 figure
    corecore