research

Quantum quench dynamics of the Bose-Hubbard model at finite temperatures

Abstract

We study quench dynamics of the Bose-Hubbard model by exact diagonalization. Initially the system is at thermal equilibrium and of a finite temperature. The system is then quenched by changing the on-site interaction strength UU suddenly. Both the single-quench and double-quench scenarios are considered. In the former case, the time-averaged density matrix and the real-time evolution are investigated. It is found that though the system thermalizes only in a very narrow range of the quenched value of UU, it does equilibrate or relax well in a much larger range. Most importantly, it is proven that this is guaranteed for some typical observables in the thermodynamic limit. In order to test whether it is possible to distinguish the unitarily evolving density matrix from the time-averaged (thus time-independent), fully decoherenced density matrix, a second quench is considered. It turns out that the answer is affirmative or negative according to the intermediate value of UU is zero or not.Comment: preprint, 20 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions