7,375 research outputs found
Study of HST counterparts to Chandra X-ray sources in the Globular Cluster M71
We report on archival Hubble Space Telescope (HST) observations of the
globular cluster M71 (NGC 6838). These observations, covering the core of the
globular cluster, were performed by the Advanced Camera for Surveys (ACS) and
the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r_h =
1.65') of M71, we find 33 candidate optical counterparts to 25 out of 29
Chandra X-ray sources while outside the half-mass radius, 6 possible optical
counterparts to 4 X-ray sources are found. Based on the X-ray and optical
properties of the identifications, we find 1 certain and 7 candidate
cataclysmic variables (CVs). We also classify 2 and 12 X-ray sources as certain
and potential chromospherically active binaries (ABs), respectively. The only
star in the error circle of the known millisecond pulsar (MSP) is inconsistent
with being the optical counterpart. The number of X-ray faint sources with
L_x>4x10^{30} ergs/s (0.5-6.0 keV) found in M71 is higher than extrapolations
from other clusters on the basis of either collision frequency or mass. Since
the core density of M71 is relatively low, we suggest that those CVs and ABs
are primordial in origin.Comment: 12 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
Electronic structure of Ni-Cu alloys : the d-electron charge distribution
[[abstract]]This work investigates charge redistribution in a series of Ni-Cu alloys using x-ray photoemission spectroscopy (XPS) and Ni/Cu L3,2- and K-edge x-ray-absorption near-edge structure (XANES). XPS results show that the constituent d bands are well separated and shifted to a slightly higher binding energy upon dilution into the other host, indicating that the atomic sites in the alloy are not as well screened relative to the pure metal. However, no significant d-band narrowing is observed, suggesting that there is modest d-d interaction in the alloys. In contrast to the XPS observation, XANES results show a reduction in white-line intensity at both edges relative to the pure metal suggesting that both Ni and Cu sites gain d charge. The unoccupied Ni d band is far from fully occupied even at infinite dilution. The discrepancy between the implications of the XPS and XANES results is dealt with using a charge redistribution model in which s-p-d rehybridization takes place at both sites within the framework of electroneutrality and electronegativity considerations. It appears that both Ni and Cu gain a small but measurable amount of d charge in alloy formation through rehybridization (loss of non-d conduction charge). Possible connection between these results and the disappearance of ferromagnetism in Ni1-xCux alloys at x>0.6 is discussed.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
Volume Fractions of the Kinematic "Near-Critical" Sets of the Quantum Ensemble Control Landscape
An estimate is derived for the volume fraction of a subset in the neighborhood
of the critical set
of the kinematic quantum ensemble control landscape J(U) = Tr(U\rho U' O),
where represents the unitary time evolution operator, {\rho} is the initial
density matrix of the ensemble, and O is an observable operator. This estimate
is based on the Hilbert-Schmidt geometry for the unitary group and a
first-order approximation of . An upper bound on these
near-critical volumes is conjectured and supported by numerical simulation,
leading to an asymptotic analysis as the dimension of the quantum system
rises in which the volume fractions of these "near-critical" sets decrease to
zero as increases. This result helps explain the apparent lack of influence
exerted by the many saddles of over the gradient flow.Comment: 27 pages, 1 figur
X-ray-absorption studies of boron-doped diamond films
[[abstract]]X-ray-absorption near-edge structure (XANES) measurements have been performed for a variety of boron-doped and undoped diamond films at the C K edge using the sample drain current mode. The C K-edge XANES spectra of B-doped diamonds resemble that of the undoped diamond regardless of the B concentration, which suggests that the overall bonding configuration of the C atom is unaltered. B impurities are found to enhance both the sp3- and sp2-bond derived resonance features in the XANES spectra.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙
Quantum properties of the Dirac field on BTZ black hole backgrounds
We consider a Dirac field on a -dimensional uncharged BTZ black hole
background. We first find out the Dirac Hamiltonian, and study its
self-adjointness properties. We find that, in analogy to the Kerr-Newman-AdS
Dirac Hamiltonian in dimensions, essential self-adjointness on
of the reduced (radial) Hamiltonian is implemented
only if a suitable relation between the mass of the Dirac field and the
cosmological radius holds true. The very presence of a boundary-like
behaviour of is at the root of this problem. Also, we determine in a
complete way qualitative spectral properties for the non-extremal case, for
which we can infer the absence of quantum bound states for the Dirac field.
Next, we investigate the possibility of a quantum loss of angular momentum for
the -dimensional uncharged BTZ black hole. Unlike the corresponding
stationary four-dimensional solutions, the formal treatment of the level
crossing mechanism is much simpler. We find that, even in the extremal case, no
level crossing takes place. Therefore, no quantum loss of angular momentum via
particle pair production is allowed.Comment: 19 pages; IOP styl
The activation energy for GaAs/AlGaAs interdiffusion
Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 82, 4842 (1997) and may be found at
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
Three dimensional topological insulators embody a newly discovered state of
matter characterized by conducting spin-momentum locked surface states that
span the bulk band gap as demonstrated via spin-resolved ARPES measurements .
This highly unusual surface environment provides a rich ground for the
discovery of novel physical phenomena. Here we present the first controlled
study of the topological insulator surfaces under strong Coulomb, magnetic and
disorder perturbations. We have used interaction of iron, with a large Coulomb
state and significant magnetic moment as a probe to \textit{systematically test
the robustness} of the topological surface states of the model topological
insulator BiSe. We observe that strong perturbation leads to the
creation of odd multiples of Dirac fermions and that magnetic interactions
break time reversal symmetry in the presence of band hybridization. We also
present a theoretical model to account for the altered surface of BiSe.
Taken collectively, these results are a critical guide in manipulating
topological surfaces for probing fundamental physics or developing device
applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with
arXiv:1009.621
- …