120,401 research outputs found
Limit Order Trading and Information Asymmetry: Empirical Evidence about the Evolution of Liquidity on an Order Driven Market
This paper is concerned with investigating the order placement behaviour of different types of traders on the ASX. We find strong evidence of informed traders use of limit orders, as well as insights into the evolution of liquidity over a trading day. The greatest increase of informed traders use of limit orders is during the last two hours of trading before closing. We also find evidence that the information value processed by informed traders make them more successful in their use of limit orders. This impact is considered substantial as in our sample the volume of limit orders from informed traders under-weighs that of the other traders by a large amount. The order strategy of liquidity traders displays a relatively flat U shaped pattern with more limit orders being used at the opening. It is also found that the pattern of the informed traders order placement shows an increase in the use of market orders. This is a result of the unique trading mechanism which entails a closing call auction as applied on the ASX. Traders that have information about the true value of stocks act on it through the use of market orders before the continuous trading platform closes.Evolution of liquidity, Informed trader, Limit order, Information asymmetry
Fast quantum information transfer with superconducting flux qubits coupled to a cavity
We present a way to realize quantum information transfer with superconducting
flux qubits coupled to a cavity. Because only resonant qubit-cavity interaction
and resonant qubit-pulse interaction are applied, the information transfer can
be performed much faster, when compared with the previous proposals. This
proposal does not require adjustment of the qubit level spacings during the
operation. Moreover, neither uniformity in the device parameters nor exact
placement of qubits in the cavity is needed by this proposal.Comment: 6 pages, 3 figure
The design of a mechanical referencing system for the rear drum of the Longwall Shearer Coal Miner
The design of two systems which reference the position of a longwall shearer coal miner to the mine roof of the present cut and of the last cut are presented. This system is part of an automation system that will guide the rear cutting drum in such a manner that the total depth of cut remains constant even though the front drum may be following an undulating roof profile. The rear drum referencing mechanism continually monitors the distance from the mine roof to the floor for the present cut. This system provides a signal to control a constant depth of cut. The last cut follower mechanism continually monitors the distance from the mine roof of the prior cut to the cutting drum. This latter system provides a signal to minimize the step height in the roof between cuts. The dynamic response of this hydraulic-pneumatic and mechanical system is analyzed to determine accumulator size and precharge pressure
Transient analysis using conical shell elements
The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements
Half metallic digital ferromagnetic heterostructure composed of a -doped layer of Mn in Si
We propose and investigate the properties of a digital ferromagnetic
heterostructure (DFH) consisting of a -doped layer of Mn in Si, using
\textit{ab initio} electronic-structure methods. We find that (i) ferromagnetic
order of the Mn layer is energetically favorable relative to antiferromagnetic,
and (ii) the heterostructure is a two-dimensional half metallic system. The
metallic behavior is contributed by three majority-spin bands originating from
hybridized Mn- and nearest-neighbor Si- states, and the corresponding
carriers are responsible for the ferromagnetic order in the Mn layer. The
minority-spin channel has a calculated semiconducting gap of 0.25 eV. Analysis
of the total and partial densities of states, band structure, Fermi surfaces
and associated charge density reveals the marked two-dimensional nature of the
half metallicity. The band lineup is found to be favorable for retaining the
half metal character to near the Curie temperature (). Being Si based
and possibly having a high as suggested by an experiment on dilutely
doped Mn in Si, the heterostructure may be of special interest for integration
into mature Si technologies for spintronic applications.Comment: 4 pages, 4 figures, Revised version, to appear in Phys. Rev. Let
Nearsightedness of Electronic Matter
In an earlier paper, W. Kohn had qualitatively introduced the concept of
"nearsightedness" of electrons in many-atom systems. It can be viewed as
underlying such important ideas as Pauling's "chemical bond," "transferability"
and Yang's computational principle of "divide and conquer." It describes the
fact that, for fixed chemical potential, local electronic properties, like the
density , depend significantly on the effective external potential only
at nearby points. Changes of that potential, {\it no matter how large}, beyond
a distance have {\it limited} effects on local electronic
properties, which rapidly tend to zero as function of . In the
present paper, the concept is first sharpened for representative models of
uncharged fermions moving in external potentials, followed by a discussion of
the effects of electron-electron interactions and of perturbing external
charges.Comment: final for
Approximate analysis and stability of pressure oscillations in ramjets
This paper summarizes work accomplished during the past five years on analysis of stability related to
recent experimental results on combustion instabilities in dump combustors. The primary purpose is to provide
the information in a form useful to those concerned with design and development of operational systems. Thus
most substantial details are omitted; the material is presented in a qualitative fashion
Weak Hopf algebras corresponding to Cartan matrices
We replace the group of group-like elements of the quantized enveloping
algebra of a finite dimensional semisimple Lie algebra
by some regular monoid and get the weak Hopf algebra
. It is a new subclass of weak Hopf algebras
but not Hopf algebras. Then we devote to constructing a basis of
and determine the group of weak Hopf algebra
automorphisms of when is not a root of
unity.Comment: 21 page
The two-dimensional hydrogen atom revisited
The bound state energy eigenvalues for the two-dimensional Kepler problem are
found to be degenerate. This "accidental" degeneracy is due to the existence of
a two-dimensional analogue of the quantum-mechanical Runge-Lenz vector.
Reformulating the problem in momentum space leads to an integral form of the
Schroedinger equation. This equation is solved by projecting the
two-dimensional momentum space onto the surface of a three-dimensional sphere.
The eigenfunctions are then expanded in terms of spherical harmonics, and this
leads to an integral relation in terms of special functions which has not
previously been tabulated. The dynamical symmetry of the problem is also
considered, and it is shown that the two components of the Runge-Lenz vector in
real space correspond to the generators of infinitesimal rotations about the
respective coordinate axes in momentum space.Comment: 10 pages, no figures, RevTex
- …