9,774 research outputs found

    Acid-base indicator properties of dyes from local plants I: dyes from Basella alba (Indian spinach) and Hibiscus sabdariffa (Zobo)

    Get PDF
    The acid-base indicator properties of aqueous and ethanol extracts from calyces of H. sabdariffa (Zobo) and a dye obtained from the ripe fruits of Basella alba (Indian spinach), two local plants, were investigated. A purple coloured dye obtained from the ripe fruits of Basella alba showed a λmax at 580nm, absorptivity of 0.2269 and was found to be photochemically unstable. A deep red coloured dye obtained from aqueous and ethanol extracts of H. sabdariffa had λmax of 520nm and 540nm and absorptivities of 0.1909 and 0.1187 respectively. The peaks are associated with nЛ* transitions. In strong acid/strong base titrations using the dyes as indicators, the end-points obtained agreed well with those obtained using conventional indicators. The dyes were found not suitable for weak acid/weak base titrations. The Ka of the purple dye from Basella alba was of the order of 10-5 while that of the red dye from H. sabdariffa was of the order of 10-6. Journal of Applied Sciences and Environmental Management Vol. 10(1) 2006: 5-

    Perfect Fluid Quantum Anisotropic Universe: Merits and Challenges

    Full text link
    The present paper deals with quantization of perfect fluid anisotropic cosmological models. Bianchi type V and IX models are discussed following Schutz's method of expressing fluid velocities in terms of six potentials. The wave functions are found for several examples of equations of state. In one case a complete wave packet could be formed analytically. The initial singularity of a zero proper volume can be avoided in this case, but it is plagued by the usual problem of non-unitarity of anisotropic quantum cosmological models. It is seen that a particular operator ordering alleviates this problem.Comment: 13 pages, 4 figures; Accepted for publication in Gen Relativ Gravi

    Susceptibility sets and the final outcome of collective Reed–Frost epidemics

    Get PDF
    This paper is concerned with exact results for the final outcome of stochastic SIR (susceptible → infective → recovered) epidemics among a closed, finite and homogeneously mixing population. The factorial moments of the number of initial susceptibles who ultimately avoid infection by such an epidemic are shown to be intimately related to the concept of a susceptibility set. This connection leads to simple, probabilistically illuminating proofs of exact results concerning the total size and severity of collective Reed–Frost epidemic processes, in terms of Gontcharoff polynomials, first obtained in a series of papers by Claude Lef`evre and Philippe Picard. The proofs extend easily to include general final state random variables defined on SIR epidemics, and also to multitype epidemics

    Numerical Modeling of Transient Wave Propagation for High Frequency NDT

    Get PDF
    Electromagnetic nondestructive testing (NDT) methods use frequencies ranging from low (dc) to high (microwave) frequencies [1]. Applications of numerical methods to model two- and three-dimensional low-frequency (dc or eddy current) nondestructive testing phenomena, where displacement currents can be omitted, were extensively examined, [2,3]. These are all interior boundary value problems. Finite element study of ultrasonic wave propagation and scattering in metals, which is again an interior boundary value problem, was recently reported in [4]. However, modeling of wave propagation for high-frequency NDT problems have not yet been attempted. Recently, finite difference methods in time domain have been successfully applied to solve transient electromagnetic wave propagation problems over the atmosphere and the ground [5], and time-dependent eddy current problems [6]. The method used here is a generalization of this work and is designed for numerical modeling of high-frequency electromagnetic wave propagation arising from nondestructive testing applications. The physical situation includes examination of the scattering effects by cracks inside a piece of material (especially dielectrics) or due to surface variations when the material is illuminated by a TM plane wave. This leads to an interface type problem

    Topological lattice actions for the 2d XY model

    Get PDF
    We consider the 2d XY Model with topological lattice actions, which are invariant against small deformations of the field configuration. These actions constrain the angle between neighbouring spins by an upper bound, or they explicitly suppress vortices (and anti-vortices). Although topological actions do not have a classical limit, they still lead to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition - at least up to moderate vortex suppression. In the massive phase, the analytically known Step Scaling Function (SSF) is reproduced in numerical simulations. However, deviations from the expected universal behaviour of the lattice artifacts are observed. In the massless phase, the BKT value of the critical exponent eta(c) is confirmed. Hence, even though for some topological actions vortices cost zero energy, they still drive the standard BKT transition. In addition we identify a vortex-free transition point, which deviates from the BKT behaviour

    The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation

    Get PDF
    Rapidity and specificity are characteristic features of proteolysis mediated by the ubiquitin-proteasome system. Therefore, the UPS is ideally suited for the remodeling of the embryonic stem cell proteome during the transition from pluripotent to differentiated states and its inverse, the generation of inducible pluripotent stem cells. The Trim-NHL family member LIN41 is among the first E3 ubiquitin ligases to be linked to stem cell pluripotency and reprogramming. Initially discovered in C. elegans as a downstream target of the let-7 miRNA, LIN41 is now recognized as a critical regulator of stem cell fates as well as the timing of neurogenesis. Despite being indispensable for embryonic development and neural tube closure in mice, the underlying mechanisms for LIN41 function in these processes are poorly understood. To better understand the specific contributions of the E3 ligase activity for the stem cell functions of LIN41, we characterized global changes in ubiquitin or ubiquitin-like modifications using Lin41-inducible mouse embryonic stem cells. The tumor suppressor protein p53 was among the five most strongly affected proteins in cells undergoing neural differentiation in response to LIN41 induction. We show that LIN41 interacts with p53, controls its abundance by ubiquitination and antagonizes p53-dependent pro-apoptotic and pro-differentiation responses. In vivo, the lack of LIN41 is associated with upregulation of Grhl3 and widespread caspase-3 activation, two downstream effectors of p53 with essential roles in neural tube closure. As Lin41-deficient mice display neural tube closure defects, we conclude that LIN41 is critical for the regulation of p53 functions in cell fate specification and survival during early brain development

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Development of a device to simulate tooth mobility

    Get PDF
    Objectives: The testing of new materials under simulation of oral conditions is essential in medicine. For simulation of fracture strength different simulation devices are used for test set-up. The results of these in vitro tests differ because there is no standardization of tooth mobility in simulation devices. The aim of this study is to develop a simulation device that depicts the tooth mobility curve as accurately as possible and creates reproducible and scalable mobility curves. Materials and methods: With the aid of published literature and with the help of dentists, average forms of tooth classes were generated. Based on these tooth data, different abutment tooth shapes and different simulation devices were designed with a CAD system and were generated with a Rapid Prototyping system. Then, for all simulation devices the displacement curves were created with a universal testing machine and compared with the tooth mobility curve. With this new information, an improved adapted simulation device was constructed. Results: A simulations device that is able to simulate the mobility curve of natural teeth with high accuracy and where mobility is reproducible and scalable was developed

    Characterization of oxylipins and dioxygenase genes in the asexual fungus Aspergillus niger

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aspergillus niger </it>is an ascomycetous fungus that is known to reproduce through asexual spores, only. Interestingly, recent genome analysis of <it>A. niger </it>has revealed the presence of a full complement of functional genes related to sexual reproduction <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. An example of such genes are the dioxygenase genes which in <it>Aspergillus nidulans</it>, have been shown to be connected to oxylipin production and regulation of both sexual and asexual sporulation <abbrgrp><abbr bid="B2">2</abbr><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr></abbrgrp>. Nevertheless, the presence of sex related genes alone does not confirm sexual sporulation in <it>A. niger</it>.</p> <p>Results</p> <p>The current study shows experimentally that <it>A. niger </it>produces the oxylipins 8,11-dihydroxy octadecadienoic acid (8,11-diHOD), 5,8-dihydroxy octadecadienoic acid (5,8-diHOD), lactonized 5,8-diHOD, 8-hydroxy octadecadienoic acid (8-HOD), 10-hydroxy octadecadienoic acid (10-HOD), small amounts of 8-hydroxy octadecamonoenoic acid (8-HOM), 9-hydroxy octadecadienoic acid (9-HOD) and 13-hydroxy octadecadienoic acid (13-HOD). Importantly, this study shows that the <it>A. niger </it>genome contains three putative dioxygenase genes, <it>ppoA</it>, <it>ppoC </it>and <it>ppoD</it>. Expression analysis confirmed that all three genes are indeed expressed under the conditions tested.</p> <p>Conclusion</p> <p><it>A. niger </it>produces the same oxylipins and has similar dioxygenase genes as <it>A. nidulans</it>. Their presence could point towards the existence of sexual reproduction in <it>A. niger </it>or a broader role for the gene products in physiology, than just sexual development.</p
    corecore