1,307 research outputs found
Accommodation coefficient of HOBr on deliquescent sodium bromide aerosol particles
Uptake of HOBr on sea salt aerosol, sea salt brine or ice is believed to be a key process providing a source of photolabile bromine (Br<sub>2</sub>) and sustaining ozone depletion cycles in the Arctic troposphere. In the present study, uptake of HOBr on sodium bromide (NaBr) aerosol particles was investigated at an extremely low HOBr concentration of 300 cm<sup>-3</sup> using the short-lived radioactive isotopes <sup>83-86</sup>Br. Under these conditions, at maximum one HOBr molecule was taken up per particle. The rate of uptake was clearly limited by the mass accommodation coefficient, which was calculated to be 0.6 ± 0.2. This value is a factor of 10 larger than estimates used in earlier models. The atmospheric implications are discussed using the box model "MOCCA'', showing that the increase of the accommodation coefficient of HOBr by a factor of 10 only slightly affects net ozone loss, but significantly increases chlorine release
Three-dimensional organization of the human interphase nucleus.
To approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic
properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics
methods. The 30 nm chromatin fibre was folded according to the Multi-Loop-Subcompartment (MLS) model, in
which ~100 kbp loops form rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL)
topology, in which 1-5 Mbp loops are attached to a flexible backbone. Both the MLS and the RW/GL model
form chromosome territories but only the MLS rosettes result in distinct subcompartments visible with light
microscopy and low overlap of chromosomes, -arms and subcompartments. This morphology and the size of
subcompartments agree with the morphology found by expression of histone auto-fluorescent protein fusions
and fluorescence in situ hybridization (FISH) experiments. Even small changes of the model parameters induced
significant rearrangements of the chromatin morphology. Thus, pathological diagnoses based on this
morphology, are closely related to structural changes on the chromatin level. The position of interphase
chromosomes depends on their metaphase location, and suggests a possible origin of current experimental
findings. The chromatin density distribution of simulated confocal (CLSM) images agrees with the MLS model
and with recent experiments. The scaling behaviour of the chromatin fiber topology and morphology of CLSM
stacks revealed fine-structured multi-scaling behaviour in agreement with the model prediction. Review and
comparison of experimental to simulated spatial distance measurements between genomic markers as function of
their genomic separation also favour an MLS model with loop and linker sizes of 63 to 126 kbp. Visual
inspection of the morphology reveals also big spaces allowing high accessibility to nearly every spatial location,
due to the chromatin occupancy <30% and a mean mesh spacing of 29 to 82 nm for nuclei of 6 to 12 μm
diameter. The simulation of diffusion agreed with this structural prediction, since the mean displacement for 10
nm sized particles of ~1 to 2 μm takes place within 10 ms. Therefore, the diffusion of biological relevant tracers
is only moderately obstructed, with the degree of obstruction ranging from 2.0 to 4.0 again in experimental
agreement
Three-dimensional organization of the human interphase nucleus
To approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic
properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics
methods. The 30 nm chromatin fibre was folded according to the Multi-Loop-Subcompartment (MLS) model, in
which ~100 kbp loops form rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL)
topology, in which 1-5 Mbp loops are attached to a flexible backbone. Both the MLS and the RW/GL model
form chromosome territories but only the MLS rosettes result in distinct subcompartments visible with light
microscopy and low overlap of chromosomes, -arms and subcompartments. This morphology and the size of
subcompartments agree with the morphology found by expression of histone auto-fluorescent protein fusions
and fluorescence in situ hybridization (FISH) experiments. Even small changes of the model parameters induced
significant rearrangements of the chromatin morphology. Thus, pathological diagnoses based on this
morphology, are closely related to structural changes on the chromatin level. The position of interphase
chromosomes depends on their metaphase location, and suggests a possible origin of current experimental
findings. The chromatin density distribution of simulated confocal (CLSM) images agrees with the MLS model
and with recent experiments. The scaling behaviour of the chromatin fiber topology and morphology of CLSM
stacks revealed fine-structured multi-scaling behaviour in agreement with the model prediction. Review and
comparison of experimental to simulated spatial distance measurements between genomic markers as function of
their genomic separation also favour an MLS model with loop and linker sizes of 63 to 126 kbp. Visual
inspection of the morphology reveals also big spaces allowing high accessibility to nearly every spatial location,
due to the chromatin occupancy <30% and a mean mesh spacing of 29 to 82 nm for nuclei of 6 to 12 µm
diameter. The simulation of diffusion agreed with this structural prediction, since the mean displacement for 10
nm sized particles of ~1 to 2 µm takes place within 10 ms. Therefore, the diffusion of biological relevant tracers
is only moderately obstructed, with the degree of obstruction ranging from 2.0 to 4.0 again in experimental
agreement
Three-dimensional organization of the human interphase nucleus
To approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic
properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics
methods. The 30 nm chromatin fibre was folded according to the Multi-Loop-Subcompartment (MLS) model, in
which ~100 kbp loops form rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL)
topology, in which 1-5 Mbp loops are attached to a flexible backbone. Both the MLS and the RW/GL model
form chromosome territories but only the MLS rosettes result in distinct subcompartments visible with light
microscopy and low overlap of chromosomes, -arms and subcompartments. This morphology and the size of
subcompartments agree with the morphology found by expression of histone auto-fluorescent protein fusions
and fluorescence in situ hybridization (FISH) experiments. Even small changes of the model parameters induced
significant rearrangements of the chromatin morphology. Thus, pathological diagnoses based on this
morphology, are closely related to structural changes on the chromatin level. The position of interphase
chromosomes depends on their metaphase location, and suggests a possible origin of current experimental
findings. The chromatin density distribution of simulated confocal (CLSM) images agrees with the MLS model
and with recent experiments. The scaling behaviour of the chromatin fiber topology and morphology of CLSM
stacks revealed fine-structured multi-scaling behaviour in agreement with the model prediction. Review and
comparison of experimental to simulated spatial distance measurements between genomic markers as function of
their genomic separation also favour an MLS model with loop and linker sizes of 63 to 126 kbp. Visual
inspection of the morphology reveals also big spaces allowing high accessibility to nearly every spatial location,
due to the chromatin occupancy <30% and a mean mesh spacing of 29 to 82 nm for nuclei of 6 to 12 μm
diameter. The simulation of diffusion agreed with this structural prediction, since the mean displacement for 10
nm sized particles of ~1 to 2 μm takes place within 10 ms. Therefore, the diffusion of biological relevant tracers
is only moderately obstructed, with the degree of obstruction ranging from 2.0 to 4.0 again in experimental
agreemen
Sufficient second-order conditions for bang-bang control problems
We provide sufficient optimality conditions for optimal control problems with bang-bang controls. Building on a structural assumption on the adjoint state, we additionally need a weak second-order condition. This second-order condition is formulated with functions from an extended critical cone, and it is equivalent to a formulation posed on measures supported on the set where the adjoint state vanishes. If our sufficient optimality condition is satisfied, we obtain a local quadratic growth condition in L1(Ω)The first author was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2014-57531-P. The second author was partially supported by the DFG under grant Wa 3626/1-1
Cosmic multi-muon events observed in the underground CERN-LEP tunnel with the ALEPH experiment
Multimuon events have been recorded with the ALEPH-detector, located 140 m underground, in parallel with ee data taking. Benefitting from the high spatial and momentum resolution of the ALEPH tracking chambers narrowly spaced muons in high multiplicity bundles could be analysed. The bulk of the data can be successfully described by standard production phenomena. The multiplicity distribution favors, though not with very high significance, a chemical composition which changes from light to heavier elements with increasing energy around the ``knee". The five highest multiplicity events, with up to 150 muons within an area of 8 m, occur with a frequency which is almost an order of magnitude above the simulation. To establish a possible effect, more of these events should be recorded with a larger area detector
In vivo characterization of protein-protein interactions in the AP1 system with fluorescence correlation spectroscopy (FCS).
The aim of these studies is the quantitative investigation of protein-protein interactions in the AP1 system in
vivo. First results of FCS measurements show an exchange in the nucleus of the proteins Fos-CFP and Jun-YFP
in the stably mono-transfected HeLa-Cells. This is also shown by fitting the bleaching curves measured in the
nucleus with an appropriate model. We obtained dissociation times between 10 and 20 seconds in the nucleus. In
the autocorrelation function a free and an obstructed component of diffusion are shown. For further studies
doubly transfected cells with both proteins, Fos-CFP and Jun-YFP, were prepared. These cells will now be
characterized with FCCS to investigate the protein-protein interactions. In order to obtain the dissociation rates
of the complex in the cell nucleus bleaching curves will be recorded on these cell lines. We also overexpressed
and purified Jun-YFP and Fos-CFP for in vitro studies
Vibriophage VcA-3 as an epidemic strain marker for the U.S. Gulf Coast Vibrio cholerae O1 clone.
Toxigenic and nontoxigenic Vibrio cholerae O1, El Tor biotype strains, which are endemic to the U.S. Gulf Coast, can be lysogenic for bacteriophage VcA-3. To evaluate the presence of VcA-3 as an indicator of toxigenicity and as an epidemic strain marker, phage production and the presence of phage and cholera toxin genes were assayed in 98 strains of V. cholerae O1 (35 U.S. and 63 foreign strains). By using a HindIII chromosomal digest for Southern blot analysis, 39 of the study strains hybridized with the VcA-3 probe in 10 banding patterns. The 15 toxigenic and 6 of the 20 nontoxigenic U.S. isolates gave four VcA-3-related patterns. Among the foreign isolates, 12 of 12 toxigenic classical biotype strains, 1 of 43 toxigenic El Tor biotype strains, and 3 of 8 nontoxigenic atypical strains gave six patterns that were clearly distinct from that of VcA-3. Compared with Southern blot analysis, the phage production assay had a sensitivity of 1.0 and a specificity of 0.48, while the colony hybridization assay had a sensitivity of 1.0 and a specificity of 0.77 for identification of VcA-3. Neither assay reliably identified the toxigenic Gulf Coast clone. The presence of VcA-3, as defined by Southern blot analysis, always separated toxigenic U.S. from foreign isolates and often from nontoxigenic U.S. isolates of V. cholerae O1
Recommended from our members
Search for heavy leptons and hard penetrating radiation in the neutrino beam, study of diffraction scattering of neutrinos; study of deep inelastic vu scattering in a ne bubble chamber at NAL, and test of the delta s = delta q rule at high momentum transfer using inclusive reactions
We propose here an experiment designed to search for the existence of heavy leptons ({lambda}{sup +}) produced in the collisions of 400 GeV/c protons with matter in the beam dump. These charged leptons, which are assumed to decay by weak interaction will be detected by the interactions of their neutrinos ({upsilon}{sub {lambda}}, {bar {upsilon}}{sub {lambda}}) in a Ne bubble chamber. For leptons with masses of greater than 1 GeV, the {lambda} life time is expected to be too short for the lepton to be observed visually, therefore, the lepton must be identified by a detailed comparison with ordinary {upsilon}{sub {mu}} interactions. We request 200,000 pictures with the beam protons hitting the shield directly and 200,000 pictures with the normal high energy {upsilon}{sub {mu}} beam. In the latter pictures we will study deep inelastic {upsilon}{sub {mu}} scattering, search for muonless {upsilon}{sub {mu}} interactions, search for {upsilon}{sub {mu}} diffractive processes and search for {Delta}S = -{Delta}Q in strange particle production processes. This experiment does not require the E{Pi} or a plate in the bubble chamber although the latter would be very useful and can run without the horn
- …