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For the prediction of experiments we simulated various models of 
human interphase chromosome 15 with Monte Carlo and Brownian 
Dynamics methods. The chromatin fiber was modelled as a flexible 
polymer fiber. Only stretching, bending and excluded volume 
interactions are considered. Chromosomes are further confined by a 
spherical potential representing the surrounding chromosomes or 
the nuclear membrane. Only the MLS model leads to clearly distinct 
functional and dynamic subcompartments in agreement with 
experiments (Fig..6B & 1A) in contrast to the RW/GL models where 
big loops are intermingling freely and featureless (Fig..6C.&.6D).

The length distribution of DNA fragments after 
irradiation with carbon ions and the sites of 
double strand breakage depend on the spatial 
arrangement of the 30 nm chromatin fiber in the 
nucleus. Simulated configurations of different 
chromosome models were taken as the basis 
for the detailed simulation of these fragment 
distributions. The RW/GL-model and the 
MLS-model lead to clearly distinct fragment 
distributions (Fig..5). A comparison with 
experiments favours an MLS-model. The 
specifity of breakage sites is currently analyzed. 
Data by P. Quicken. 
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The diffusion of spherical particles within 
a nucleus was simulated using Brownian 
Dynamics methods. The mean square 
displacement of the particles depends on 
the diameter, the radius of the nucleus, 
i.e. the obstacle concentration, and also 
critically on the interaction between 
particles and structure. For typical 
biological particles <10 nm the degree of 
obstruction Dw is moderate (Fig. 3). Thus 
such particles reach most nuclear 
locations in less than 10 - 20 ms. This 
agrees with the volume occupancy and 
mean chromatin fiber spacing. The 
diffusion of particles in living interphase 
nuclei depends on the local structure. In 
vivo chromatin markers allow to 
investigate this relation using 
fluorescence correlation spectroscopy 
(FCS). The correlation between diffusion 
obstruction and structure vanishes for 
small particles (Fig. 4) and increases with 
increasing particle size.

Fig..3: Simulated obstruction of diffusion
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Fig..6A: Starting configuration 
with the form and size of a 
metaphase chromosome.

Fig..6B: MLS model with 
126 kbp loops and linkers.

Fig..6C: RW/GL model 
with 126 kbp loops. 

Fig..6D: RW/GL model 
with 5 Mbp loops.
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Fig..7A.&.7B: Simulation of a human interphase nucleus containing all 46 
chromosomes with 1,200,000 polymer segments. The MLS-model leads to 
the formation of distinct and non-overlapping chromosome territories. 

Despite the successful linear sequencing of the genome its three 
dimensional structure is widely unknown although its importance for gene 
regulation and replication. Through a comparison between experiments and 
simulations we show here an interdisciplinary approach leading to the 
determination of the three- dimensional organization of the human genome.

Fluorescence in situ hybridization (FISH) is used for the specific 
marking of chromosome arms (Fig..1A) and pairs of small 
chromosomal DNA regions (Fig..1B). The labeling is visualized with 
confocal laser scanning microscopy followed by image 
reconstruction. Chromosome arms show only small overlap and 
globular substructures, as predicted by the MLS-model 
(Fig..1A & 6A). A comparison between simulated and measured 
spatial distances between genomic regions as function of their 
genomic distances results in a good agreement with the MLS-model 
having loop sizes of arround 126 kbp and linker sizes between 63 
kbp and 126 kbp (Fig..2).
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Fig..1A.&.1B: FISH-images of a territory painting of chromosome 15 
(left, 1A) and genomic markers YAC-48 and YAC60 (right 1B) with a 
genomic separation of 1.0 Mbp in interphase of fibroblast cells.

CONCLUSION 
Simulations of chromsomes and the whole cell 
nucleus show that only the MLS-model leads to the 
formation of non-overlapping chromosome territories 
and distinct functional and dynamic 
sub-compartments. Spatial distances between FISH 
labeled pairs of genomic markers as function of their 
genomic distance agrees with an MLS-model with 
loop sizes of 120 kbp and linker sizes of 63 to 126 kbp. 
The in vivo chromatin distribution visualized by 
histone-GFP fusion proteins is similar to those found 
in the simulation of whole cell nuclei. Fractal analysis 
of the simulations reveal the multifractality of 
chromosomes. It is possible to quantify the in vivo 
chromatin distribution with fractal analysis and to 
relate the result to differences in morphology. The 
simulated diffusion of particles in the nucleus is only 
moderately obstructed by the chromatin fiber 
topology in agreement with FCS experiments. 
Simulated fragment distributions, based on double 
strand breakage after carbon-ion irriadiation, differs in 
different models. Here again a comparison to 
experiments favours an MLS-model. 

Fractal analysis is especially suited to quantify the unordered and 
non-euclidean chromatin distribution of the nucleus. The dynamic behaviour of 
the chromatin structure and the diffusion of particles in the nucleus are also 
closely connected to the fractal dimension. The fractal analysis of the 
simulation of chromosome 15 lead to multifractal behaviour in agreement with 
porous network research (Fig..8). Therefore chromosome territories show a 
higher degree of determinism than previously thought. First tests of fractal 
analysis of chromatin distributions by histone fusions to fluorescent proteins in 
vivo result in significant differences for different morphologies (Fig..9) and 
might favour an MLS-model like chromatin distribution.
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Fig..8: Comparison of RW/GL- and MLS- model with fractal dimension
of the chromatin fiber from simulations.
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Fig..9: Fractal Dimension as function of the intensity threshold.
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Fig..5: Comparison of simulated fragment
distributions.
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Fig..2: Comparison of the RW/GL- and the MLS-model with experimentally
determined interphase distances.
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Fig. 4: The degree of diffusion obstruction plotted against the chromatin density, 
represented by the H2A-CFP fluorescence intensity. Data from FCS of Alexa568 
dye in LCLS103H cell nuclei stably expressing a H2A-CFP fusion protein.
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Abstract 
 
 
To approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic 
properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics 
methods. The 30 nm chromatin fibre was folded according to the Multi-Loop-Subcompartment (MLS) model, in 
which ~100 kbp loops form rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL) 
topology, in which 1-5 Mbp loops are attached to a flexible backbone. Both the MLS and the RW/GL model 
form chromosome territories but only the MLS rosettes result in distinct subcompartments visible with light 
microscopy and low overlap of chromosomes, -arms and subcompartments. This morphology and the size of 
subcompartments agree with the morphology found by expression of histone auto-fluorescent protein fusions 
and fluorescence in situ hybridization (FISH) experiments. Even small changes of the model parameters induced 
significant rearrangements of the chromatin morphology. Thus, pathological diagnoses based on this 
morphology, are closely related to structural changes on the chromatin level. The position of interphase 
chromosomes depends on their metaphase location, and suggests a possible origin of current experimental 
findings. The chromatin density distribution of simulated confocal (CLSM) images agrees with the MLS model 
and with recent experiments. The scaling behaviour of the chromatin fiber topology and morphology of CLSM 
stacks revealed fine-structured multi-scaling behaviour in agreement with the model prediction. Review and 
comparison of experimental to simulated spatial distance measurements between genomic markers as function of 
their genomic separation also favour an MLS model with loop and linker sizes of 63 to 126 kbp. Visual 
inspection of the morphology reveals also big spaces allowing high accessibility to nearly every spatial location, 
due to the chromatin occupancy <30% and  a mean mesh spacing of 29 to 82 nm for nuclei of 6 to 12 µm 
diameter. The simulation of diffusion agreed with this structural prediction, since the mean displacement for 10 
nm sized particles of ~1 to 2 µm takes place within 10 ms. Therefore, the diffusion of biological relevant tracers 
is only moderately obstructed, with the degree of obstruction ranging from 2.0 to 4.0 again in experimental 
agreement. 
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