303 research outputs found

    Ising magnets with mobile defects

    Full text link
    Motivated by recent experiments on cuprates with low-dimensional magnetic interactions, a new class of two-dimensional Ising models with short-range interactions and mobile defects is introduced and studied. The non-magnetic defects form lines, which, as temperature increases, first meander and then become unstable. Using Monte Carlo simulations and analytical low- and high-temperature considerations, the instability of the defect stripes is monitored for various microscopic and thermodynamic quantities in detail for a minimal model, assuming some of the couplings to be indefinitely strong. The robustness of the findings against weakening the interactions is discussed as well

    Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2

    Full text link
    We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Ne'el temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let

    Magnetodielectric and magnetoelastic coupling in TbFe3(BO3)4

    Get PDF
    We have studied the magnetodielectric and magnetoelastic coupling in TbFe3(BO3)4 single crystals by means of capacitance, magnetostriction and Raman spectroscopy measurements. The data reveal strong magnetic field effects on the dielectric constant and on the macroscopic sample length which are associated to long range magnetic ordering and a field-driven metamagnetic transition. We discuss the coupling of the dielectric, structural, and magnetic order parameters and attribute the origin of the magnetodielectric coupling to phonon mode shifts according to the Lyddane-Sachs-Teller (LST) relation.Comment: Accepted for publication in Physical Review

    Thermodynamic and structural aspects of the potential energy surface of simulated water

    Full text link
    Relations between the thermodynamics and dynamics of supercooled liquids approaching a glass transition have been proposed over many years. The potential energy surface of model liquids has been increasingly studied since it provides a connection between the configurational component of the partition function on one hand, and the system dynamics on the other. This connection is most obvious at low temperatures, where the motion of the system can be partitioned into vibrations within a basin of attraction and infrequent inter-basin transitions. In this work, we present a description of the potential energy surface properties of supercooled liquid water. The dynamics of this model has been studied in great details in the last years. Specifically, we locate the minima sampled by the liquid by ``quenches'' from equilibrium configurations generated via molecular dynamics simulations. We calculate the temperature and density dependence of the basin energy, degeneracy, and shape. The temperature dependence of the energy of the minima is qualitatively similar to simple liquids, but has anomalous density dependence. The unusual density dependence is also reflected in the configurational entropy, the thermodynamic measure of degeneracy. Finally, we study the structure of simulated water at the minima, which provides insight on the progressive tetrahedral ordering of the liquid on cooling

    Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids

    Full text link
    The liquid-gas spinodal and the glass transition define ultimate boundaries beyond which substances cannot exist as (stable or metastable) liquids. The relation between these limits is analyzed {\it via} computer simulations of a model liquid. The results obtained indicate that the liquid - gas spinodal and the glass transition lines intersect at a finite temperature, implying a glass - gas mechanical instability locus at low temperatures. The glass transition lines obtained by thermodynamic and dynamic criteria agree very well with each other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Lifetime of quasi-particles in the nearly-free electron metal Sodium

    Get PDF
    We report a high-resolution angle-resolved photoemission (ARPES) study of the prototypical nearly-free-electron metal sodium. The observed mass enhancement is slightly smaller than that derived in previous studies. The new results on the lifetime broadening increase the demand for theories beyond the random phase approximation. Our results do not support the proposed strong enhancement of the scattering rates of the charge carriers due to a coupling to spin fluctuations. Moreover, a comparison with earlier electron energy-loss data on sodium yields a strong reduction of the mass enhancement of dipolar electron-hole excitations compared to that of monopole hole excitations, measured by ARPES.Comment: 5 pages, 6 figure

    Two energy gaps and Fermi surface 'arcs' in NbSe2

    Full text link
    Using angle-resolved photoemission spectroscopy (ARPES), we report on the direct observation of the energy gap in 2H-NbSe2 caused by the charge-density waves (CDW). The gap opens in the regions of the momentum space connected by the CDW vectors, which implies a nesting mechanism of CDW formation. In remarkable analogy with the pseudogap in cuprates, the detected energy gap also exists in the normal state (T>T0) where it breaks the Fermi surface into 'arcs', it is non-monotonic as a function of temperature with a local minimum at the CDW transition temperature (T0) and it forestalls the superconducting gap by excluding the nested portions of the Fermi surface from participating in superconductivity.Comment: Related work http://www.ifw-dresden.de/institutes/iff/research/SC/arpe

    The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids

    Full text link
    Glass is a microscopically disordered, solid form of matter that results when a fluid is cooled or compressed in such a fashion that it does not crystallise. Almost all types of materials are capable of glass formation -- polymers, metal alloys, and molten salts, to name a few. Given such diversity, organising principles which systematise data concerning glass formation are invaluable. One such principle is the classification of glass formers according to their fragility\cite{fragility}. Fragility measures the rapidity with which a liquid's properties such as viscosity change as the glassy state is approached. Although the relationship between features of the energy landscape of a glass former, its configurational entropy and fragility have been analysed previously (e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these features is far from being well established. Results for a model liquid, whose fragility depends on its bulk density, are presented in this letter. Analysis of the relationship between fragility and quantitative measures of the energy landscape (the complicated dependence of energy on configuration) reveal that the fragility depends on changes in the vibrational properties of individual energy basins, in addition to the total number of such basins present, and their spread in energy. A thermodynamic expression for fragility is derived, which is in quantitative agreement with {\it kinetic} fragilities obtained from the liquid's diffusivity.Comment: 8 pages, 3 figure

    TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes.

    Get PDF
    A diverse environment challenges skin to maintain temperature, hydration, and electrolyte balance while also maintaining normal immunological function. Rosacea is a common skin disease that manifests unique inflammatory responses to normal environmental stimuli. We hypothesized that abnormal function of innate immune pattern recognition could explain the enhanced sensitivity of patients with rosacea, and observed that the epidermis of patients with rosacea expressed higher amounts of Toll-like receptor 2 (TLR2) than normal patients. Increased expression of TLR2 was not seen in other inflammatory skin disorders such as atopic dermatitis or psoriasis. Overexpression of TLR2 on keratinocytes, treatment with TLR2 ligands, and analysis of TLR2-deficient mice resulted in a calcium-dependent release of kallikrein 5 from keratinocytes, a critical protease involved in the pathogenesis of rosacea. These observations show that abnormal TLR2 function may explain enhanced inflammatory responses to environmental stimuli and can act as a critical element in the pathogenesis of rosacea

    Practical guidelines for monitoring and management of coagulopathy following tisagenlecleucel CAR T-cell therapy

    Get PDF
    Cytokine release syndrome (CRS) is a systemic inflammatory response associated with chimeric antigen receptor T-cell (CAR-T) therapies. In severe cases, CRS can be associated with coagulopathy and hypofibrinogenemia. We present our global multicenter experience with CRS-associated coagulopathy after tisagenlecleucel therapy in 137 patients with relapsed or refractory B-cell acute lymphoblastic leukemia from the ELIANA and ENSIGN trials. These trials included clinical guidelines for fibrinogen replacement during CRS-associated coagulopathy. Hypofibrinogenemia requiring replacement was observed only in patients with severe CRS. A higher percentage of patients who required replacement were <10 years old, compared with those who did not require replacement. Twenty-three patients received replacement for hypofibrinogenemia (<1.5 g/L); 9 of them developed marked hypofibrinogenemia (<1 g/L). Very low fibrinogen levels (<1 g/L) were documented in patients before maximal CRS (n = 1), during maximal CRS (n = 7), and at CRS improvement (n = 1). Although hypofibrinogenemia was the most clinically significant coagulopathy, some patients also developed prolonged prothrombin time and activated partial thromboplastin time and increased international normalized ratio, further increasing the risk of bleeding. Hypofibrinogenemia was effectively managed using fibrinogen concentrate or cryoprecipitate replacement; severe (grade 4) bleeding events were rare (n = 2). CRS-associated coagulopathy with hypofibrinogenemia is manageable according to empiric guidelines of fibrinogen replacement for CAR-T trials. Fibrinogen concentrate should be used when cryoprecipitate is not reliably available. Monitoring fibrinogen levels in patients with moderate or severe CRS is essential for avoiding potentially fatal bleeding events
    corecore