554 research outputs found

    Semiconductor quantum dot - a quantum light source of multicolor photons with tunable statistics

    Full text link
    We investigate the intensity correlation properties of single photons emitted from an optically excited single semiconductor quantum dot. The second order temporal coherence function of the photons emitted at various wavelengths is measured as a function of the excitation power. We show experimentally and theoretically, for the first time, that a quantum dot is not only a source of correlated non-classical monochromatic photons but is also a source of correlated non-classical \emph{multicolor} photons with tunable correlation properties. We found that the emitted photon statistics can be varied by the excitation rate from a sub-Poissonian one, where the photons are temporally antibunched, to super-Poissonian, where they are temporally bunched.Comment: 4 pages, 2 figure

    Single photon Mach-Zehnder interferometer for quantum networks based on the Single Photon Faraday Effect: principle and applications

    Get PDF
    Combining the recent progress in semiconductor nanostructures along with the versatility of photonic crystals in confining and manipulating light, quantum networks allow for the prospect of an integrated and low power quantum technology. Within quantum networks, which consist of a system of waveguides and nanocavities with embedded quantum dots, it has been demonstrated in theory that many-qubit states stored in electron spins could be teleported from one quantum dot to another via a single photon using the Single Photon Faraday Effect. However, in addition to being able to transfer quantum information from one location to another, quantum networks need added functionality such as (1) controlling the flow of the quantum information and (2) performing specific operations on qubits that can be easily integrated. In this paper, we show how in principle a single photon Mach-Zehnder interferometer, which uses the concept of the single photon Faraday Effect to manipulate the geometrical phase of a single photon, can be operated both as a switch to control the flow of quantum information inside the quantum network and as various single qubit quantum gates to perform operations on a single photon. Our proposed Mach-Zehnder interferometer can be fully integrated as part of a quantum network on a chip. Given that the X gate, the Z gate, and the XZ gate are essential for the implementation of quantum teleportation, we show explicitly their implementation by means of our proposed single photon Mach-Zehnder interferometer. We also show explicitly the implementation of the Hadamard gate and the single-qubit phase gate, which are needed to complete the universal set of quantum gates for integrated quantum computing in a quantum network.Comment: 25 pages, 16 figure

    Optical spectroscopy of single quantum dots at tunable positive, neutral and negative charge states

    Full text link
    We report on the observation of photoluminescence from positive, neutral and negative charge states of single semiconductor quantum dots. For this purpose we designed a structure enabling optical injection of a controlled unequal number of negative electrons and positive holes into an isolated InGaAs quantum dot embedded in a GaAs matrix. Thereby, we optically produced the charge states -3, -2, -1, 0, +1 and +2. The injected carriers form confined collective 'artificial atoms and molecules' states in the quantum dot. We resolve spectrally and temporally the photoluminescence from an optically excited quantum dot and use it to identify collective states, which contain charge of one type, coupled to few charges of the other type. These states can be viewed as the artificial analog of charged atoms such as H−^{-}, H−2^{-2}, H−3^{-3}, and charged molecules such as H2+_{2}^{+} and H3+2_{3}^{+2}. Unlike higher dimensionality systems, where negative or positive charging always results in reduction of the emission energy due to electron-hole pair recombination, in our dots, negative charging reduces the emission energy, relative to the charge-neutral case, while positive charging increases it. Pseudopotential model calculations reveal that the enhanced spatial localization of the hole-wavefunction, relative to that of the electron in these dots, is the reason for this effect.Comment: 5 figure

    Deep-ultraviolet photodetectors from epitaxially grown NixMg1-xO

    Get PDF
    Deep-ultraviolet (DUV) photodetectors were fabricated from high quality NixMg1-xO epitaxially grown by plasma-assisted molecular beam epitaxy on an approximately lattice matched MgO \u3c 100 \u3e substrate. A mid-range Ni composition (x=0.54) NixMg1-xO film was grown for DUV (lambda(peak) \u3c 300 nm) photoresponse and the film was characterized by reflected high-energy electron diffraction, Rutherford backscattering spectroscopy, x-ray diffraction, and optical transmission measurements. Photoconductive detectors were then fabricated by deposition of symmetric interdigitated contacts (10 nm Pt/150 nm Au) with contact separations of 5, 10, and 15 mu m. The detectors exhibited peak responsivities in the DUV (lambda(peak) approximate to 250 nm) as high as 12 mA/W, low dark currents (I-dark \u3c 25 nA), and DUV:visible ejection ratio of approximately 800:1

    Bandgap engineering of sol-gel synthesized amorphous Zn1-xMgxO films

    Get PDF
    Amorphous Zn1-xMgxO (alpha-Zn1-xMgxO) ternary alloy thin films across the full compositional range were synthesized by a low-cost sol-gel method on quartz substrates. The amorphous property of the alpha-Zn1-xMgxO films was verified by x-ray diffraction, and atomic force microscopy revealed a smooth surface with sub-nanometer root-mean square roughness. The current phase segregation issue limiting application of crystalline Zn1-xMgxO with 38% \u3c x \u3c 75% was completely eliminated by growing amorphous films. Optical transmission measurements showed high transmissivity of more than 90% in the visible and near infrared regions, with optical bandgap tunability from 3.3 eV to more than 6.5 eV by varying the Mg content

    Single-photon Mach-Zehnder interferometer for quantum networks based on the single-photon Faraday effect

    Get PDF
    Combining the recent progress in semiconductor nanostructures along with the versatility of photonic crystals in confining and manipulating light, quantum networks allow for the prospect of an integrated and low power quantum technology. Within quantum networks, which consist of a system of waveguides and nanocavities with embedded quantum dots, it has been demonstrated in theory that many-qubit states stored in electron spins could be teleported from one quantum dot to another via a single photon using the single-photon Faraday effect. However, in addition to being able to transfer quantum information from one location to another, quantum networks need added functionality such as (1) controlling the flow of the quantum information and (2) performing specific operations on qubits that can be easily integrated. In this paper, we show how a single-photon Mach-Zehnder interferometer (SMZI), that uses the concept of the single-photon Faraday effect to manipulate the polarization of a single photon, can be operated both as a switch to control the flow of quantum information inside the quantum network and as various single-qubit quantum gates to perform operations on a single photon. Given that the X gate, the Z gate, and the XZ gate are essential for the implementation of quantum teleportation, we show explicitly their implementation by means of our proposed SMZI. We also present the implementation of the Hadamard gate and the single-qubit phase gate, which are needed to complete the universal set of quantum gates for integrated quantum computing in a quantum network. Finally, the expected fidelity and robustness of the proposed SMZI are quantitatively explored by considering the phase errors within the SMZI

    Hybrid CdZnO/GaN quantum-well light emitting diodes

    Get PDF
    We report on the demonstration of light emission from hybrid CdZnO quantum-well light emitting diodes. A one-dimensional drift-diffusion method was used to model the expected band structure and carrier injection in the device, demonstrating the potential for 90% internal quantum efficiency when a CdZnO quantum well is used. Fabricated devices produced visible electroluminescence that was found to redshift from 3.32 to 3.15 eV as the forward current was increased from 20 to 40 mA. A further increase in the forward current to 50 mA resulted in a saturation of the redshift

    Migration and luminescence enhancement effects of deuterium in ZnO/ZnCdO quantum wells

    Get PDF
    ZnO/ZnCdO/ZnO multiple quantum well samples grown on sapphire substrates by molecular beam epitaxy and annealed in situ were exposed to D(2) plasmas at 150 degrees C. The deuterium showed migration depths of similar to 0.8 mu m for 30 min plasma exposures, with accumulation of (2)H in the ZnCdO wells. The photoluminescence (PL) intensity from the samples was increased by factors of 5 at 5 K and similar to 20 at 300 K as a result of the deuteration, most likely due to passivation of competing nonradiative centers. Annealing up to 300 degrees C led to increased migration of (2)H toward the substrate but no loss of deuterium from the sample and little change in the PL intensity. The initial PL intensities were restored by annealing at \u3e = 400 degrees C as (2)H was evolved from the sample (similar to 90% loss by 500 degrees C). By contrast, samples without in situ annealing showed a decrease in PL intensity with deuteration. This suggests that even moderate annealing temperatures lead to degradation of ZnCdO quantum wells. (c) 2008 American Institute of Physics

    Pure luminescence transitions from a small InAs/GaAs quantum dot exhibiting a single electron level

    Get PDF
    2 páginas, 3 figuras.Pure photoluminescence spectra originating from a single InAs/GaAs quantum dot, which is small enough to possess only one single-electron level, are demonstrated. A symmetric fine structure of the exciton and the biexciton is observed.Peer reviewe
    • …
    corecore