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Bandgap engineering of sol-gel synthesized amorphous Zn12xMgxO films
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(Received 3 March 2011; accepted 6 June 2011; published online 30 June 2011)

Amorphous Zn1�xMgxO (a-Zn1�xMgxO) ternary alloy thin films across the full compositional

range were synthesized by a low-cost sol-gel method on quartz substrates. The amorphous property

of the a-Zn1�xMgxO films was verified by x-ray diffraction, and atomic force microscopy revealed

a smooth surface with sub-nanometer root-mean square roughness. The current phase segregation

issue limiting application of crystalline Zn1�xMgxO with 38% < x < 75% was completely

eliminated by growing amorphous films. Optical transmission measurements showed high

transmissivity of more than 90% in the visible and near infrared regions, with optical bandgap

tunability from 3.3 eV to more than 6.5 eV by varying the Mg content. VC 2011 American Institute
of Physics. [doi:10.1063/1.3604782]

Wide bandgap ternary and quaternary materials1,2 have

been widely investigated recently for bandgap engineering

through visible to deep ultraviolet (UV) regions. Among

others, Zn1�xMgxO is a promising candidate3,4 for applica-

tions such as transparent conducting oxides5 and optoelec-

tronics devices in the UV spectral region.6 In principle, it has

tunable bandgap from 3.3 eV for wurtzite ZnO to 7.8 eV for

rock salt MgO. Although the ionic radius of Mg2þ (0.57 Å)

is close to that of Zn (0.6 Å), the crystal structure difference

and large lattice mismatch between ZnO (wurtzite, 3.25 Å)

and MgO (rock salt, 4.22 Å) causes phase segregation

in Zn1�xMgxO with Mg compositions between 37% < x

< 62%.4,6 As a result, development and subsequent applica-

tion of Zn1�xMgxO within the 4.27 and 5.4 eV region has

been hindered. This is a critical spectral window on the edge

of the solar blind region (250–290 nm) where both detectors

and emitters are necessary for many applications. Here, we

report on a new route towards avoiding the current mixed

phase issues for Zn1�xMgxO within this spectral region, thus

providing a new possible route towards controllable and re-

producible energy gap tuning of optoelectronic devices

based on this ternary.

Both phase segregation and lattice mismatch between

substrate and film can be avoided by growing amorphous

Zn1�xMgxO (a-Zn1�xMgxO) films.2,7,8 Amorphous films are

usually very smooth, with few to no grain boundaries, and

amenable to low temperature and large area deposition. Vari-

ous deposition techniques have been employed to prepare

Zn1�xMgxO films, such as pulsed laser deposition (PLD),

molecular beam epitaxy, metal-organic chemical vapor dep-

osition, and RF magnetron sputtering. For preparing amor-

phous films, sol-gel9–11 has many advantages such as being

cost-effective, being highly suitable for oxide materials, and

providing excellent control of elemental composition and

additives at molecular level. However, existing studies on

sol-gel synthesized Zn1�xMgxO9,11 are limited to low Mg

concentration up to x¼ 0.36, corresponding to a bandgap of

3.93 eV. In this study, a sol-gel deposition method was

applied to fabricate a-Zn1�xMgxO thin films with full com-

position tuning (x¼ 0–1), corresponding to bandgap energies

from 3.3 eV to more than 6.5 eV, providing a new route

towards low-cost optoelectronic devices in the 200–300 nm

spectral region.

The Zn1�xMgxO thin films were synthesized on quartz

substrates by the sol-gel method. Commercially available zinc

acetate 2-hydrate (Zn(CH3COO)2�2H2O) and magnesium ace-

tate 2-hydrate (Mg(CH3COO)2�2H2O) were dissolved in 20 ml

2-methoxethanol. Diethanolamine (HN(CH2CH2OH)2) (DEA)

was then added to the solution as the stabilizer. The total con-

centration of metal ions was maintained at 0.2 mol/L and the

molar ratio of the DEA to the total metal ions was 1:1. The

percentage of Mg to total metal ions, x, was adjusted from 0

to 1 to realize the full a-Zn1�xMgxO compositional range. For

each metal ion ratio, the solution was stirred at 60 �C for 30

min and spin-coated on quartz substrates at 2000 rpm. The as-

coated films were immediately preheated to 300 �C for 10 min

to evaporate or burn off the solvent and other organic compo-

nents in the film. To obtain a thickness of more than 300 nm,

this cycle was repeated ten times and then the film was post-

annealed in air atmosphere at 400 �C for 1 h.

The Zn1�xMgxO films were characterized by x-ray dif-

fraction (XRD) (Rigaku D/MAX x-ray diffractometer) using

Cu-Ka radiation (k¼ 1.54056 Å).12 The Zn1�xMgxO films

with x¼ 0.2–1 had no observable peaks at 2h diffraction

angles between 10� and 90�, indicating an amorphous struc-

ture. In contrast, the pure ZnO film had peaks (FWHM

¼ 0.65–0.7) at 2h diffraction angles around 31.8�, 34.41�,
and 36.25�, attributed to the (100), (002), and (101) planes of

wurtzite ZnO, respectively. We subsequently found that the

crystalline structure of ZnO could be suppressed and circum-

vented by lowering the post-annealing temperature to

300 �C, resulting in a completely amorphous ZnO thin film.

The amorphous nature and morphology of the a-Zn1�xMgxO

films was further investigated using atomic force microscopy

(AFM, Veeco Dimension 3100). The root-mean-square of the

surface roughness of these films ranged from 0.3 to 1 nm,

showing no recognizable crystalline features for films

annealed up to 400 �C and indicating significantly smooth

surfaces. For films annealed at higher temperature, crystalline

a)Author to whom correspondence should be addressed. Electronic mail:

winston@creol.ucf.edu.
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surface features were present, indicating that higher tempera-

tures resulted in polycrystalline films.12

X-ray photoelectron spectroscopy (XPS, Physical Elec-

tronics 5400 ESCA) was carried out using an Al-Ka X-ray

source to analyze the composition. The position of the

C1s peak was taken as a standard with a binding energy of

285.0 eV. Figure 1 shows the XPS spectra of an a-Zn0.3

Mg0.7O film. Signatures of both Zn and Mg atoms are clearly

observed in the XPS spectra of the film. The ratio of Zn/Mg

was determined to be 30.3:69.7 using AUGERSCAN3 software.

This is in good agreement with the initial ratio (30:70) in the

precursor solution, indicating that the ratio of Zn/Mg in the

solutions is maintained in the amorphous films after deposi-

tion and annealing at low temperature. Figure 1(c) shows the

XPS spectra of O1s and its two Gaussian-resolved compo-

nents centered at 530.04 eV and 532.11 eV, respectively.

The lower binding energy component centered at 530.04 eV

is attributed to O2� ions in the Zn-O and Mg-O bonds, while

the other component located at 532.11 eV shows the pres-

ence of loosely bound oxygen chemisorbed on the surface,

e.g., –OH, –CO3, or absorbed O2.13,14 No peaks were

detected around a binding energy of 398 eV (N1s), indicating

that N related chemicals are burnt out or evaporated and no

longer present in the amorphous films.

The transmission spectra for Zn0.3Mg0.7O films annealed

at different temperatures, shown in Fig. 2(a), were generated

using a Cary 500 UV-VIS spectrophotometer. The absorp-

tion edge of the film becomes sharper when annealed at

400 �C as compared to the as-deposited film. This was also

observed for a-Zn1�xMgxO films of other compositions and

most likely attributed to the burning off of organic chemicals

in the film. However, at annealing temperatures higher than

450 �C, all samples exhibited obvious transmission tails,

indicating that phase segregation begins to occur in the films

at annealing temperatures above 400 �C. The phase segrega-

tion becomes rather pronounced at temperatures higher than

500 �C and two absorption edges at around 360 nm and

210 nm were observed in all cases, representing Zn-rich and

Mg-rich phases, respectively.15 When annealing at a temper-

ature higher than 800 �C, the transmission curves changes lit-

tle, implying that a stable crystalline Zn0.3Mg0.7O alloy with

phase segregation has been obtained. We observed similar

phase segregation signatures for Zn1�xMgxO with x¼ 0.5

and 0.75 when annealing at temperature higher than 450 �C.

These observations indicate that the optimal post-annealing

temperature for a-Zn1�xMgxO is 400 �C in order to avoid

crystalline films with phase segregation. As expected, for

Mg concentration lower than 38% (Ref. 16) or higher than

75%, the phase segregation does not happen, even when

annealing at 800 �C. It is noteworthy that the phase segrega-

tion range of sol-gel synthesized Zn1�xMgxO with 38% < x

< 75% is different from that grown by PLD (38% < x <
62%).4

The presence of phase segregation was further con-

firmed by XRD, as shown in Fig. 2(b). No obvious XRD

peaks were observed for annealing up to 400 �C. For anneal-

ing at temperatures �450 �C, the film begins to exhibit mul-

tiple peaks associated with both wurtzite and rock salt

ZnMgO, similar to the work by Wang et al.16 This is consist-

ent with the transmission data in Figure 2(a), where phase

segregation signatures were observed for annealing tempera-

tures of 450 �C and higher.

Figure 3(a) illustrates the optical transmission spectra of

a-Zn1�xMgxO (x¼ 0–1) in the wavelength range of 190–

800 nm. It is observed that the films are highly transparent

(greater than 90%) in the visible and near infrared region of

400–800 nm. This is attributed to low surface roughness of

amorphous film since the scattering between the air and film

interface increases when surface roughness increases. The

absorption coefficient, a, can be derived from the transmis-

sion T by Beer’s law T¼ I/I0¼ e�ad, where I is the transmit-

ted intensity, I0 is the incident intensity, and d is the

thickness of the film, as measured by standard profilometry,

varying from 170 nm to 650 nm. We generated a plot of

(aht)2 versus photon energy, ht, as shown in the inset in Fig-

ure 3(a), and used this to estimate the bandgap17 by linearly

extrapolating to the energy (ht) axis as shown in the inset.

The determined bandgap, Eg, as function of Mg concentra-

tion, x, is shown in Figure 3(b). It can be seen that the

bandgap value increases linearly for Mg content up to

FIG. 1. (Color online) XPS spectra of Zn0.3Mg0.7O film: (a) Mg 2p, (b) Zn

2p3/2, and (c) O1s with two resolved O bonding (dashed lines) components

with peaks located at 530.04 eV and 532.11 eV, respectively.

FIG. 2. (Color online) (a) Transmission spectra of as-grown Zn0.3Mg0.7O

samples annealed for 1 h at various temperatures and (b) the corresponding

XRD patterns. The wurtzite ZnO peaks (100), (002), and (101) and rock salt

MgO peak (200) are indicated.
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x¼ 0.7. For Mg content greater than 0.7, a departure to

another linear behavior is observed. These two linear fits are

described by the following two equations:

EgðxÞ ¼ 1:36xþ 3:28 when 0 � x � 0:7
EgðxÞ ¼ 8:4x� 2:064 when 0:75 � x � 0:95:

It should be noted that the bandgap of high Mg content

(x > 0.95) films could not be well determined since the

absorption edge begins near the detection limit of the spec-

trometer at �190 nm, limiting the number of data points

available. Using the limited data, we observe that the

bandgap for pure a-MgO is larger than 6.5 eV (open square

in Figure 3(b)), indicating that the optical bandgap of a-

Zn1�xMgxO is continuously tunable from 3.3 eV to more

than 6.5 eV. The values of bandgap determined in this work

are in good agreement with those for crystalline films

reported in other sol-gel publications,10,18 as shown in Figure

3(b). The slight difference in observed bandgap is mainly

associated with a shift of absorption edge due to different

post-annealing temperature of the films19 and resultant varia-

tions in crystallinity. The Urbach tail characteristic for amor-

phous Zn1�xMgxO films at the absorbance edges with Mg

concentrations up to 60% was also found.12 The width of the

tail for ZnO was 0.089 eV, similar to that obtained by others

for CVD ZnO (0.08-0.10 eV).20

In summary, amorphous Zn1�xMgxO films across the

full compositional range were obtained using a sol-gel depo-

sition method on quartz substrates, overcoming the known

mixed phase region for the ternary and offering band gap

tunability within the critical UV-C spectral region. Post-

annealing temperature was optimized to 400 �C to obtain a

sharp absorption edge and to eliminate phase segregation

issues intrinsic to crystalline Zn1�xMgxO films. The ratio of

Zn/Mg in the precursor was found to remain in the amor-

phous films after annealing, simplifying band gap tuning,

and a-Zn1�xMgxO films with high smoothness (<1 nm

RMS) and high transmissivity (>90%) in the visible and

near infrared regions were obtained. The bandgap of the

films could be engineered continuously from 3.3 eV to more

than 6.5 eV as the Mg concentration increases from x¼ 0 to

x¼ 1, showing controllable tunability in the UV-C spectral

region. Thus, sol-gel synthesized amorphous Zn1�xMgxO

films are a promising candidate for simple and low-cost fab-

rication of amorphous-based optoelectronic devices such as

solar-blind detectors.
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