924 research outputs found

    More Legumes for Green Manure = More Corn

    Get PDF
    Iowa State College experiments show that a lot of nitrogren can be cheaply produced by adding a legume seeding to the oats preceding corn. Research indicates every farmer could profitably make a legume seeding for green manure in every acre of oats in addition to meadow and rotation plantings

    Evolution of level density step structures from 56,57-Fe to 96,97-Mo

    Full text link
    Level densities have been extracted from primary gamma spectra for 56,57-Fe and 96,97-Mo nuclei using (3-He,alpha gamma) and (3-He,3-He') reactions on 57-Fe and 97-Mo targets. The level density curves reveal step structures above the pairing gap due to the breaking of nucleon Cooper pairs. The location of the step structures in energy and their shapes arise from the interplay between single-particle energies and seniority-conserving and seniority-non-conserving interactions.Comment: 9 pages, including 5 figure

    New features of the phase transition to superconducting state in thin films

    Full text link
    The Halperin-Lubensky-Ma (HLM) effect of a fluctuation-induced change of the order of phase transition in thin films of type I superconductors with relatively small Ginzburg-Landau number κ\kappa is considered. Numerical data for the free energy, the order parameter jump, the latent heat, and the specific heat of W, Al and In are presented to reveal the influence of film thickness and material parameters on the properties of the phase transition. We demonstrate for the first time that in contrast to the usual notion the HLM effect occurs in the most distinct way in superconducting films with high critical magnetic field Hc0H_{c0} rather than in materials with small κ\kappa. The possibility for an experimental observation of the fluctuation change of the order of superconducting phase transition in superconducting films is discussed.Comment: 11 pages, MikTexTeX, 3 fig, 2 Tables, corrected some typos, Submitted J.Phys:Cond Ma

    Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED

    Get PDF
    In this paper we study dynamical chiral symmetry breaking in dimensionally regularized quenched QED within the context of Dyson-Schwinger equations. In D < 4 dimensions the theory has solutions which exhibit chiral symmetry breaking for all values of the coupling. To begin with, we study this phenomenon both numerically and, with some approximations, analytically within the rainbow approximation in the Landau gauge. In particular, we discuss how to extract the critical coupling alpha_c = pi/3 relevant in four dimensions from the D dimensional theory. We further present analytic results for the chirally symmetric solution obtained with the Curtis-Pennington vertex as well as numerical results for solutions exhibiting chiral symmetry breaking. For these we demonstrate that, using dimensional regularization, the extraction of the critical coupling relevant for this vertex is feasible. Initial results for this critical coupling are in agreement with cut-off based work within the currently achievable numerical precision.Comment: 24 pages, including 5 figures; submitted to Phys. Rev.

    Staggered fermions and chiral symmetry breaking in transverse lattice regulated QED

    Full text link
    Staggered fermions are constructed for the transverse lattice regularization scheme. The weak perturbation theory of transverse lattice non-compact QED is developed in light-cone gauge, and we argue that for fixed lattice spacing this theory is ultraviolet finite, order by order in perturbation theory. However, by calculating the anomalous scaling dimension of the link fields, we find that the interaction Hamiltonian becomes non-renormalizable for g2(a)>4πg^2(a) > 4\pi, where g(a)g(a) is the bare (lattice) QED coupling constant. We conjecture that this is the critical point of the chiral symmetry breaking phase transition in QED. Non-perturbative chiral symmetry breaking is then studied in the strong coupling limit. The discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken, and the ground state to lowest order in the strong coupling expansion corresponds to the classical ground state of the two-dimensional spin one-half Heisenberg antiferromagnet.Comment: 30 pages, UFIFT-HEP-92-1

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    Ethane steam reforming over a platinum/alumina catalyst: effect of sulphur poisoning

    Get PDF
    In this study we have examined the adsorption of hydrogen sulfide and methanethiol over platinum catalysts and examined the effect of these poisons on the steam reforming of ethane. Adsorption of hydrogen sulfide was measured at 293 and 873 K. At 873 K the adsorbed state of hydrogen sulfide in the presence of hydrogen was SH rather than S, even though the Pt:S ratio was unity. The effect of 11.2 ppm hydrogen sulfide or methanethiol on the steam reforming of ethane was studied at 873 K and 20 barg. Both poisons deactivated the catalyst over a number of hours, but methanethiol was found to be more deleterious, reducing the conversion by almost an order of magnitude, possibly due to the co-deposition of sulfur and carbon. Changes in the selectivity revealed that the effect of sulfur was not uniform on the reactions occurring, with the production of methane reduced proportionally more than the other products, due to the surface sensitivity of the hydrogenolysis and methanation reactions. The water-gas shift reaction was affected to a lesser extent. No regeneration was observed when hydrogen sulfide was removed from the feedstream in agreement with adsorption studies. A slight regeneration was observed when methanethiol was removed from the feed, but this was believed to be due to the removal of carbon rather than sulfur. The overall effect of sulfur poisoning was to reduce activity and enhance hydrogen selectivity
    corecore