10,981 research outputs found

    Quantum phase diagram of an exactly solved mixed spin ladder

    Full text link
    We investigate the quantum phase diagram of the exactly solved mixed spin-(1/2,1) ladder via the thermodynamic Bethe ansatz (TBA). In the absence of a magnetic field the model exhibits three quantum phases associated with su(2), su(4) and su(6) symmetries. In the presence of a strong magnetic field, there is a third and full saturation magnetization plateaux within the strong antiferromagnetic rung coupling regime. Gapless and gapped phases appear in turn as the magnetic field increases. For weak rung coupling, the fractional magnetization plateau vanishs and exhibits new quantum phase transitions. However, in the ferromagnetic coupling regime, the system does not have a third saturation magnetization plat eau. The critical behaviour in the vicinity of the critical points is also derived systematically using the TBA.Comment: 20 pages, 2 figure

    Histopathology and selective biomarker expression in human meibomian glands

    Get PDF
    BACKGROUND/AIMS: Meibomian gland dysfunction (MGD) is the most common form of evaporative dry eye disease, but its pathogenesis is poorly understood. This study examined the histopathological features of meibomian gland (MG) tissue from cadaver donors to identify potential pathogenic processes that underlie MGD in humans. METHODS: Histological analyses was performed on the MGs in the tarsal plates dissected from four cadaver donors, two young and two old adults, including a 36-year-old female (36F) and three males aged 30, 63 and 64 years (30M, 63M and 64M). RESULTS: The MGs of 36F displayed normal anatomy and structure, whereas the MGs of 30M showed severe ductal obstruction with mild distortion. The obstruction was caused by increased cytokeratin levels in association with hyperproliferation, but not hyperkeratinisation. In two older males, moderate to severe MG atrophy was noted. Cell proliferation was significantly reduced in the MG acini of the two older donors as measured by Ki67 labelling index (6.0%±3.4% and 7.9%±2.8% in 63M and 64M, respectively) when compared with that of the two younger donors (23.2%±5.5% and 16.9%±4.8% in 30M and 36F, respectively) (p\u3c0.001). The expression patterns of meibocyte differentiation biomarkers were similar in the older and younger donors. CONCLUSION: Our histopathological study, based on a small sample size, suggests potentially distinct pathogenic mechanisms in MGD. In the young male adult, hyperproliferation and aberrant differentiation of the central ductal epithelia may lead to the obstruction by overproduced cytokeratins. In contrast, in older adults, decreased cell proliferation in acinar basal epithelia could be a contributing factor leading to MG glandular atrophy

    Integrable models and quantum spin ladders: comparison between theory and experiment for the strong coupling ladder compounds

    Full text link
    (abbreviated) This article considers recent advances in the investigation of the thermal and magnetic properties of integrable spin ladder models and their applicability to the physics of real compounds. The ground state properties of the integrable two-leg spin-1/2 and the mixed spin-(1/2,1) ladder models at zero temperature are analyzed by means of the Thermodynamic Bethe Ansatz. Solving the TBA equations yields exact results for the critical fields and critical behaviour. The thermal and magnetic properties of the models are investigated in terms of the recently introduced High Temperature Expansion method, which is discussed in detail. It is shown that in the strong coupling limit the integrable spin-1/2 ladder model exhibits three quantum phases: (i) a gapped phase in the regime H<Hc1H<H_{c1}, (ii) a fully polarised phase for H>Hc2H>H_{c2}, and (iii) a Luttinger liquid magnetic phase in the regime Hc1<H<Hc2H_{c1}<H<H_{c2}. The critical behaviour in the vicinity of the critical points is of the Pokrovsky-Talapov type. The temperature-dependent thermal and magnetic properties are directly evaluated from the exact free energy expression and compared to known experimental results for a range of strong coupling ladder compounds. Similar analysis of the mixed spin-(1/2,1) ladder model reveals a rich phase diagram, with a 1/3 and a full saturation magnetisation plateau within the strong antiferromagnetic rung coupling regime. For weak rung coupling, the fractional magnetisation plateau is diminished and a new quantum phase transition occurs. The phase diagram can be directly deduced from the magnetisation curve obtained from the exact result derived from the HTE. The thermodynamics of the spin-orbital model with different single-ion anisotropies is also investigated.Comment: 90 pages, 33 figures, extensive revisio

    Origin and tuning of the magnetocaloric effect for the magnetic refrigerant MnFe(P1-xGex)

    Full text link
    Neutron diffraction and magnetization measurements of the magneto refrigerant Mn1+yFe1-yP1-xGex reveal that the ferromagnetic and paramagnetic phases correspond to two very distinct crystal structures, with the magnetic entropy change as a function of magnetic field or temperature being directly controlled by the phase fraction of this first-order transition. By tuning the physical properties of this system we have achieved a maximum magnetic entropy change exceeding 74 J/Kg K for both increasing and decreasing field, more than twice the value of the previous record.Comment: 6 Figures. One tabl

    Limits on Stellar Companions to Exoplanet Host Stars With Eccentric Planets

    Get PDF
    Though there are now many hundreds of confirmed exoplanets known, the binarity of exoplanet host stars is not well understood. This is particularly true of host stars which harbor a giant planet in a highly eccentric orbit since these are more likely to have had a dramatic dynamical history which transferred angular momentum to the planet. Here we present observations of four exoplanet host stars which utilize the excellent resolving power of the Differential Speckle Survey Instrument (DSSI) on the Gemini North telescope. Two of the stars are giants and two are dwarfs. Each star is host to a giant planet with an orbital eccentricity > 0.5 and whose radial velocity data contain a trend in the residuals to the Keplerian orbit fit. These observations rule out stellar companions 4-8 magnitudes fainter than the host star at passbands of 692nm and 880nm. The resolution and field-of-view of the instrument result in exclusion radii of 0.05-1.4 arcsecs which excludes stellar companions within several AU of the host star in most cases. We further provide new radial velocities for the HD 4203 system which confirm that the linear trend previously observed in the residuals is due to an additional planet. These results place dynamical constraints on the source of the planet's eccentricities, constraints on additional planetary companions, and informs the known distribution of multiplicity amongst exoplanet host stars.Comment: 10 pages, 7 figures, 2 tables, accepted to Ap

    Thermal and magnetic properties of integrable spin-1 and spin-3/2 chains with applications to real compounds

    Full text link
    The ground state and thermodynamic properties of spin-1 and spin-3/2 chains are investigated via exactly solved su(3) and su(4) models with physically motivated chemical potential terms. The analysis involves the Thermodynamic Bethe Ansatz and the High Temperature Expansion (HTE) methods. For the spin-1 chain with large single-ion anisotropy, a gapped phase occurs which is significantly different from the valence-bond-solid Haldane phase. The theoretical curves for the magnetization, susceptibility and specific heat are favourably compared with experimental data for a number of spin-1 chain compounds. For the spin-3/2 chain a degenerate gapped phase exists starting at zero external magnetic field. A middle magnetization plateau can be triggered by the single-ion anisotropy term. Overall, our results lend further weight to the applicability of integrable models to the physics of low-dimensional quantum spin systems. They also highlight the utility of the exact HTE method.Comment: 38 pages, 15 figure

    Anomalous Sliding Friction and Peak Effect near the Flux Lattice Melting Transition

    Get PDF
    Recent experiments have revealed a giant "peak effect" in ultrapure high TcT_c superconductors. Moreover, the new data show that the peak effect coincides exactly with the melting transition of the underlying flux lattice. In this work, we show using dynamical scaling arguments that the friction due to the pinning centers acting on the flux lattice develops a singularity near a continuous phase transition and can diverge for many systems. The magnitude of the nonlinear sliding friction of the flux lattice scales with this atomistic friction. Thus, the nonlinear conductance should diverge for a true continuous transition in the flux lattice or peak at a weakly first order transition or for systems of finite size.Comment: 4 pages, to appear in Phys. Rev.

    Cusp-scaling behavior in fractal dimension of chaotic scattering

    Full text link
    A topological bifurcation in chaotic scattering is characterized by a sudden change in the topology of the infinite set of unstable periodic orbits embedded in the underlying chaotic invariant set. We uncover a scaling law for the fractal dimension of the chaotic set for such a bifurcation. Our analysis and numerical computations in both two- and three-degrees-of-freedom systems suggest a striking feature associated with these subtle bifurcations: the dimension typically exhibits a sharp, cusplike local minimum at the bifurcation.Comment: 4 pages, 4 figures, Revte

    Non-Arrhenius Behavior of Surface Diffusion Near a Phase Transition Boundary

    Full text link
    We study the non-Arrhenius behavior of surface diffusion near the second-order phase transition boundary of an adsorbate layer. In contrast to expectations based on macroscopic thermodynamic effects, we show that this behavior can be related to the average microscopic jump rate which in turn is determined by the waiting-time distribution W(t) of single-particle jumps at short times. At long times, W(t) yields a barrier that corresponds to the rate-limiting step in diffusion. The microscopic information in W(t) should be accessible by STM measurements.Comment: 4 pages, Latex with RevTeX macro
    • …
    corecore