5,793 research outputs found

    Origin of electron cyclotron maser-induced radio emissions at ultra-cool dwarfs: magnetosphere-ionosphere coupling currents

    Full text link
    A number of ultra-cool dwarfs emit circularly polarised radio waves generated by the electron cyclotron maser instability. In the solar system such radio is emitted from regions of strong auroral magnetic field-aligned currents. We thus apply ideas developed for Jupiter's magnetosphere, being a well-studied rotationally-dominated analogue in our solar system, to the case of fast-rotating UCDs. We explain the properties of the radio emission from UCDs by showing that it would arise from the electric currents resulting from an angular velocity shear in the fast-rotating magnetic field and plasma, i.e. by an extremely powerful analogue of the process which causes Jupiter's auroras. Such a velocity gradient indicates that these bodies interact significantly with their space environment, resulting in intense auroral emissions. These results strongly suggest that auroras occur on bodies outside our solar system.Comment: Accepted for publication in the Astrophysical Journa

    Hubble Space Telescope observations of the NUV transit of WASP-12b

    Full text link
    We present new observations of four closely-spaced NUV transits of the hot Jupiter-like exoplanet WASP-12b using HST/COS, significantly increasing the phase resolution of the observed NUV light curve relative to previous observations, while minimising the temporal variation of the system. We observe significant excess NUV absorption during the transit, with mean normalised in-transit fluxes of Fnorm0.97F_\mathrm{norm}\simeq0.97, i.e. \simeq2-5 σ\sigma deeper than the optical transit level of 0.986\simeq0.986 for a uniform stellar disk (the exact confidence level depending on the normalisation method used). We further observe an asymmetric transit shape, such that the post-conjunction fluxes are overall \simeq2-3 σ\sigma higher than pre-conjunction values, and characterised by rapid variations in count rate between the pre-conjunction and out of transit levels. We do not find evidence for an early ingress to the NUV transit as suggested by earlier HST observations. However, we show that the NUV count rate observed prior to the optical transit is highly variable, but overall \simeq2.2-3.0 σ\sigma below the post-transit values and comparable in depth to the optical transit, possibly forming a variable region of NUV absorption from at least phase ϕ\phi\simeq0.83, limited by the data coverage.Comment: Accepted into the Astrophysical Journa

    Instability driven fragmentation of nanoscale fractal islands

    Full text link
    Formation and evolution of fragmentation instabilities in fractal islands, obtained by deposition of silver clusters on graphite, are studied. The fragmentation dynamics and subsequent relaxation to the equilibrium shapes are controlled by the deposition conditions and cluster composition. Sharing common features with other materials' breakup phenomena, the fragmentation instability is governed by the length-to-width ratio of the fractal arms.Comment: 5 pages, 3 figures, Physical Review Letters in pres

    A Coordinated X-ray and Optical Campaign of the Nearby Massive Binary δ\delta Orionis Aa: II. X-ray Variability

    Get PDF
    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral dataset of the δ\delta Orionis Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ~479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 A˚\AA is confirmed, with maximum amplitude of about +/-15% within a single ~125 ks observation. Periods of 4.76d and 2.04d are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phase=0.0 when the secondary δ\delta Orionis Aa2 is at inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.Comment: 36 pages, 14 Tables, 19 Figures, accepted by ApJ, one of 4 related papers to be published togethe

    Post-Newtonian Approximation in Maxwell-Like Form

    Get PDF
    The equations of the linearized first post-Newtonian approximation to general relativity are often written in "gravitoelectromagnetic" Maxwell-like form, since that facilitates physical intuition. Damour, Soffel and Xu (DSX) (as a side issue in their complex but elegant papers on relativistic celestial mechanics) have expressed the first post-Newtonian approximation, including all nonlinearities, in Maxwell-like form. This paper summarizes that DSX Maxwell-like formalism (which is not easily extracted from their celestial mechanics papers), and then extends it to include the post-Newtonian (Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e. gravitational stress tensor) and law of momentum conservation in Maxwell-like form. The authors and their colleagues have found these Maxwell-like momentum tools useful for developing physical intuition into numerical-relativity simulations of compact binaries with spin.Comment: v4: Revised for resubmission to Phys Rev D, 6 pages. v3: Reformulated in terms of DSX papers. Submitted to Phys Rev D, 6 pages. v2: Added references. Changed definitions & convention

    A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum

    Get PDF
    We present an overview of four phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system which includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object which can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary, Delta Ori A provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ksec and covering nearly the entire binary orbit. Companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities simultaneous with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectrum. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.30.5×0.3-0.5\times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of \ion{Fe}{17} and \ion{Ne}{10} are inconsistent with model predictions, which may be an effect of resonance scatteringComment: accepted by ApJ; revised according to ApJ proo

    ABCC9/SUR2 in the Brain: Implications for Hippocampal Sclerosis of Aging and a Potential Therapeutic Target

    Get PDF
    The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium (“K ATP ”) channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The K ATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9 /SUR2 may provide a “druggable target”, relevant perhaps to both HS-Aging and Alzheimer\u27s disease. We conclude that more work is required to better understand the roles of ABCC9 /SUR2 in the human brain during health and disease conditions
    corecore