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4Center for the Investigation of Membrane Excitability Diseases, Washington University School of 
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5Department of Biostatistics, University of Kentucky, Lexington, KY, 40536, USA

Abstract

The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human 

neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component 

of the ATP-sensitive potassium (“KATP”) channel, a metabolic sensor for stress and/or hypoxia 

that has been shown to change in aging. The KATP channel also helps regulate the neurovascular 

unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, 

microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that 

ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu 

syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic 

syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal 

sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent 

neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and 

cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human 

pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a 

“druggable target”, relevant perhaps to both HS-Aging and Alzheimer’s disease. We conclude that 

more work is required to better understand the roles of ABCC9/SUR2 in the human brain during 

health and disease conditions.
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Introduction

Hippocampal sclerosis of aging (HS-Aging) (Nelson, et al., 2014,Nelson, et al., 2015) is a 

common age related brain disorder, characterized by cognitive deterioration that mimics 

Alzheimer disease (AD) clinically but has a different brain histopathology, a distinctive 

genetic predisposition, and a later age range for maximal risk (Brenowitz, et al., 

2014,Murray, et al., 2014,Nelson, et al., 2013,Zarow, et al., 2012). Although HS-Aging and 

AD are challenging to distinguish in a living patient (Brenowitz, et al., 2014,Pao, et al., 

2011,Yu, et al., 2015), it is likely that each disease will require different strategies for 

prevention or treatment. The underlying pathogenesis of HS-Aging is unknown currently, 

but there are indications that the ABCC9 gene may play a key role. This review will 

summarize what is known about the ABCC9 gene in the human brain and describe our 

hypothesis linking ABCC9 with HS-Aging. We consider the relevant genetic and 

evolutionary biologic literature, along with current understanding of ABCC9 function and 

how the gene may be related to other human diseases.

ABCC genetic phylogeny and the role of ABCC9 paralogs in human 

diseases

ABCC9 (ATP-binding cassette, sub-family C member 9) gene products are referred to as 

sulfonylurea receptor 2 (SUR2) proteins. The term “sulfonylurea receptor” derives from the 

fact that sulfonylurea drugs bind to and block protein activity. Thus we employ established 

terminology referring to the ABCC9 gene, which serves as the template for SUR2 mRNA 

and SUR2 protein (Nichols, et al., 2013,Shi, et al., 2012). SUR2 regulates potassium (K+) 

channels in plasma membrane and intracellular organelles (Fig. 1), and other aspects of 

genomic regulation and protein function are described in greater detail below.

Themes emerge to shed light on human ABCC9 from studies in other species. The “ABC” 

gene cluster encode large transmembrane proteins and members of this gene family have 

been identified from every biologic phylum including bacteria (Cui and Davidson, 

2011,Igarashi, et al., 2004). Each gene encodes polypeptides with the same basic unit being 

one or two nucleotide binding domains (NBD), each associated with a conserved 

transmembrane domain (TMD) (Igarashi, et al., 2004). Historically, the ABCC sub-cluster 

was termed “multidrug-resistant associated proteins” because of the ability of some ABCC 

proteins to extrude drugs and toxins from cells (Bouige, et al., 2002,S.F. Zhou, et al., 2008). 

The “SUR”-subclass of ABCC genes contain a pair of TMD-NBD domains, with a unique 

third TMD (TMD0, Fig. 2). SUR genes encode a subtype of K+ channel regulators, and K+ 

channels are the most widely expressed ion channel among biologic species (Littleton and 

Ganetzky, 2000) with a broad range of functions.
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Absent in plants and fungi, direct SUR gene orthologs are numerous in invertebrate species 

(Frey, et al., 1998,Sturm, et al., 2009), and these genes provide clues about the 

evolutionarily ancient SUR gene functions. In D. melanogaster, for example, a direct SUR 

ortholog was identified (Dermauw and Van Leeuwen, 2014). This “dSUR” gene has been 

implicated in aging, metabolism (including lipid processing and insulin signaling), sleep, 

and survival after infection or stress (Akasaka, et al., 2006,Allebrandt, et al., 2013,Croker, et 

al., 2007,Nasonkin, et al., 1999,Ocorr, et al., 2007). There are intriguing results that indicate 

that dSUR plays a role in aging; the gene is important in the cardiac hypoxic stress response 

but downregulated in aging (Akasaka, et al., 2006,Nishimura, et al., 2011,Ocorr, et al., 

2007). The spider T. urticae harbors the largest number of ABCC subfamily member genes 

of any animal known, including a SUR gene (Dermauw, et al., 2013). The expansive “burst” 

of ABCC genes in this agricultural pest species may help explain this species’ ability to 

resist pesticidal strategies (Dermauw, et al., 2013). By contrast, some invertebrate species 

(silkworms) appear to lack direct SUR homologs (Xie, et al., 2012).

Among vertebrate species, two SUR-type paralogs are relatively well conserved -- termed 

ABCC8/SUR1 and ABCC9/SUR2 in humans (Fig. 1). Protein sequence homology between 

human and zebrafish SUR2 is 79–80% (Fig. 3). It is clear from genetic manipulation that 

these SUR genes play phylogenetically durable roles in multiple organs and tissues, 

including stress response, metabolism, and regulation of blood vessel function (Babenko, et 

al., 1998,Bryan, et al., 2007,Flatt, et al., 1994,Seino, et al., 2000,Seino and Miki, 

2003,Solbach, et al., 2006). Interestingly, there have been shown to be age-dependent 

changes in KATP channels in a number of species including humans (Bao, et al., 2013,Du, 

et al., 2013,Kawano, et al., 2010,Toyoda, et al., 1997,Tricarico, et al., 1997,Vajapey, et al., 

2014). As discussed below, the molecular basis of their function is understood to be 

primarily as K+ channel regulators(Nichols, 2006), but there are multiple studies suggesting 

additional actions that may contribute to the wide physiological impact. ABCC8/SUR1 

function is best understood in its role in the vertebrate pancreas and central neuronal tissue, 

as a controller of insulin secretion and neuronal excitability. In non-mammalian vertebrates, 

the ABCC9/SUR2 orthologs (sur2), in both goldfish (Carassius auratus), and in yellowtail 

flounder (Limanda ferruginea), are reported to participate in those species’ cardiac hypoxic 

stress response (Cameron, et al., 2013,MacCormack and Driedzic, 2002). Some 

neurobiological functions have also been implicated for SUR2 in non-mammalian 

vertebrates. For example, experiments in frogs showed that SUR modifying drugs impacted 

the neuromuscular junction presynaptically (Salgado, et al., 1993). In chickens, an opioid 

signaling cascade includes SUR2 modulation (Tu, et al., 2008).

Additional clues about potential physiological and pathogenetic roles are provided by 

ABCC9 paralogs in the human genome, presumed to have evolved from a common ancestral 

gene, that are associated with altered risk for human diseases. For example, mutations of 

ABCC7/CFTR cause cystic fibrosis, the most common fatal genetic disease in Americans 

(Riordan, et al., 1989). In comparison to ABCC7, ABCC8/SUR1 is far more homologous to 

ABCC9/SUR2 (Fig. 3). ABCC8 is considered to be more highly expressed in the human 

brain than ABCC9 (Shi, et al., 2005), and ABCC8/SUR1 has been implicated in 

neuropathologic processes (Jiang, et al., 2007,Mehta, et al., 2013,Simard, et al., 
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2008a,Simard, et al., 2008b,Simard, et al., 2012,Tosun, et al., 2013). Mutations in ABCC8 

are associated with congenital hyperinsulinism and diabetes (Bonfanti, et al., 2015,Bryan, et 

al., 2007,Efferth, 2003,Haghverdizadeh, et al., 2014,Remedi and Nichols, 2009,Smith, et al., 

2007). In the latter case, more severe mutations are associated with a complex syndrome 

(Developmental delay, Epilepsy and Neonatal diabetes, DEND), in which CNS excitability 

is aberrant, as a result of hyperactivity of the SUR1-regulated KATP channel activity. That 

the same disease can result both from mutations in ABCC8 and in the associated K+ channel 

pore gene, KCNJ11/Kir6.2, located nearby in Chromosome 11p (Fig. 1)(Busiah, et al., 

2013,Florez, et al., 2004,Gloyn, et al., 2003,Koster, et al., 2008,Laukkanen, et al., 

2004,Nielsen, et al., 2003,van Dam, et al., 2005) underscoring the complex 

interconnectedness of the SUR genes with their K+ channels (Bonfanti, et al., 2015,Inoue, et 

al., 1997,Olson and Terzic, 2010).

We can summarize three themes relevant to human ABCC9 functions, based on studies of 

other genes and organisms. First, bona fide SUR genes expressed in invertebrates have been 

associated with diverse functions including resistance to various stressors and neurotoxins. 

Second, multiple genes of the ABCC cluster, that share characteristics with ABCC9, are 

associated with human disease conditions including neuropathological outcomes. And 

finally, among vertebrates, 2 SUR and 2 Kir proteins are strongly conserved, widely 

expressed, and closely interconnected in function.

ABCC9/SUR2 function: biochemistry and physiology

SUR proteins provide regulatory subunits of KATP channels which respond to metabolic 

perturbations (Minami, et al., 2004,Nichols, 2006). A complex interplay has been 

characterized between ATP inhibition, via an interaction with the pore-forming subunit, and 

ADP-dependent activation, via interaction with the NBDs of the SUR subunit. These 

activities result in channel sensitivity to local metabolic state -- opening when the ratio of 

ATP/ADP is low. By blocking or enhancing the ADP (activation) effect, the compendium of 

pharmacologic agonists and antagonists, many of which are used extensively in humans (de 

Weille, et al., 1989,Isomoto and Kurachi, 1997,Jackson and Bressler, 1981a,Jackson and 

Bressler, 1981b,Melander, et al., 1989,Misler and Giebisch, 1992,Stowers and Borthwick, 

1977), interact directly with the SUR subunits.

Biochemical and biophysical studies indicate that the functional KATP channel is an octamer 

consisting of four pore-forming Kir6 proteins, each associated with one SUR subunit 

(Clement, et al., 1997,Shyng and Nichols, 1997) . The association is necessary for the 

complex to traffic to the cell membrane: both SUR and Kir6 proteins contain polybasic 

sequences that act as endoplasmic reticulium retention signals, which are effectively masked 

when the two proteins are associated (de Araujo, et al., 2011,Lodwick, et al., 2014,Nichols, 

2006,Park, et al., 2008,Park and Terzic, 2010). The genes that encode these proteins are 

shown in Fig. 1, and the understood geometric dispositions of the various proteins depicted 

in cartoon form. Although biochemical regulation of the KATP channel function is 

incompletely understood, particularly in the brain, a number of post-translational 

modifications have been reported. For example, SUR2 is affected directly by glycosylation, 

sulfhydration, and protein kinase A phosphorylation (Gade, et al., 2013,Gao, et al., 
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2014,Kang, et al., 2014,Light, 1996). The KATP channel is also regulated via separate 

phosphorylation event(s) in the Kir6.x channels (Edwards, et al., 2009,Ko, et al., 

2008,Sanada and Kitakaze, 2004,Sun, et al., 2008), again showing complex functional 

interdependence of these proteins.

RNA splicing, producing alternative SUR2 mRNA transcripts, is a conspicuous feature of 

ABCC9/SUR2 regulation (Chutkow, et al., 1999,Shi, et al., 2005,Ye, et al., 2009). Reported 

ABCC9-derived transcripts are presented in Fig. 4. Most prior studies have focused on two 

important SUR2 splice variants, which are termed SUR2A and SUR2B. These transcripts are 

generated through differential splicing of two ABCC9 exons which encode the polypeptides’ 

carboxy terminal portions (Chutkow, et al., 1996,Davis-Taber, et al., 2000,Inagaki, et al., 

1996,Isomoto, et al., 1996). SUR2A has been reported to show relatively high expression in 

cardiac and skeletal muscle cells, whereas SUR2B is more broadly expressed including in 

smooth muscle cells and brain (Chutkow, et al., 1996,Davis-Taber, et al., 2000,Isomoto, et 

al., 1996,Ploug, et al., 2010,Shi, et al., 2005).

A poorly understood RNA splicing event skips 25 internal ABCC9 exons to produce a 

smaller gene product that is trafficked to the internal mitochondrial membrane (Ye, et al., 

2009). This “mitoSUR” protein variant (~55kDa) is approximately one third the size of 

“full-length” SUR2 (Figs. 2B, 4G) and the pharmacologic properties are profoundly 

different from the larger daughter proteins of ABCC9 (Liu, et al., 2001) . The mitoSUR has 

been described in many contexts including mammalian brain (Aggarwal, et al., 

2010,Aggarwal, et al., 2013,Fahrenbach, et al., 2014,Lacza, et al., 2003,Maack, et al., 2009). 

Genetic lesions in ABCC9 may also differentially affect the expression/splicing, or function, 

of mitoSUR, SUR2A, and/or SUR2B depending on sequence location. There are other SUR2 

transcripts for which the protein products’ functions are essentially unknown (Fig. 4), and 

these observations underscore the necessity for obtaining more basic information about 

ABCC9.

Experimental studies have elucidated numerous functions for KATP channels, varying by 

cell-specific, developmental, metabolic, and stress related factors. Here we show schematic 

diagrams depicting current hypotheses that may be relevant to human brain KATP channels 

(Figs 5–7). Each figure represents a different paradigm where SUR2 is involved in response 

to different stimuli and to changes in environment.

In many different cell types, SUR2 may compensate for stress and/or hypoxia by changing 

membrane hyperpolarization toward a voltage state that attenuates local intracellular Ca++ 

levels (Fig. 5). Much of the published experimental work to date has focused on cardiac 

myocytes, where KATP channels are involved in the important paradigm of “ischemic 

preconditioning” (Rana, et al., 2015,Sanada and Kitakaze, 2004), a term that refers to 

experimentally induced resistance to the adverse impact of loss of blood supply. Similar 

paradigm(s) probably occur in human CNS (Alkan, 2009,Busija, et al., 2008,Yuan, et al., 

2004). In the vascular smooth muscle cell within the media layer of arterioles (Fig. 6), the 

KATP channels transmit signals from blood-borne and local factors to modulate blood flow. 

Notably, this cartoon ignores other members of the neurovascular unit such as endothelial 

cells, pericytes, and astrocytes, which express KATP channels also (see below). Finally, in 
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the CNS (Fig. 7), multiple cell types express SUR2 (see below) and the pleitropic effects of 

the gene may include neurotransmitter-responsive excitability (Sun and Hu, 2010). There is 

a recurrent theme of SUR2 proteins sensing Mg++/ADP levels to promote KATP channels’ 

opening and local Ca++ processing; however, the physiologic result varies widely according 

to the microenvironment.

ABCC9 in the brain

Specific KATP channel functions are challenging to define experimentally because of 

complexity at many levels: the variable components in mature KATP channels, different 

splice variants of both SUR proteins, functional changes that may result from altered 

intracellular trafficking, post-translational modifications, and the idiosyncrasies of channel 

functions from cell type to cell type. A recent review listed over 50 different K+ channel 

proteins in the mammalian CNS, and acknowledged formidable “challenges presented by 

the combined molecular complexity of [K+ channels] and structural complexity of the 

mammalian brain” (Trimmer, 2015). That review article focused on the pore-forming K+ 

channel proteins so ABCC9/SUR2 was not mentioned. As stated above, KATP channels may 

be composed of mixtures of regulatory (SUR1/SUR2) and pore-forming (Kir6.1/Kir6.2) 

subunits (Wheeler, et al., 2008,Yoshida, et al., 2004) and each combination has different 

attributes (Cheng, et al., 2008,Yamada, et al., 1997) although there may be constraints on the 

combinatorial potential of an individual channel complex (Giblin, et al., 2002). A discussion 

of some of the characteristics of the various KATP channel assemblages is presented 

elsewhere (Babenko, et al., 1998). Relatively little is known about the gene regulatory 

orchestration of the biologically integrated channel components in brain. Interestingly, the 

human SUR2 3’UTR is variable in length (al) which may be a pathway for regulating 

transcript stability (Nelson and Keller, 2007). Further, mouse Sur1 and Sur2 expression can 

be regulated through promoter DNA methylation (Fatima, et al., 2012).

A fundamental question is -- which cells express the mRNA and proteins? In brief, SUR2 is 

likely expressed in every cell type of the human brain, including neurons, astrocytes, 

oligodendrocytes, ependymal cells, microglia, pericytes, vascular smooth muscle, and 

endothelial cells. It is a common overgeneralization that SUR2A is a skeletal and cardiac 

muscle protein whereas SUR2B is a vascular smooth muscle protein -- the actual expression 

pattern of SUR2 isoforms is less straightforward. One of the technical limitations to the 

study of ABCC9/SUR2 is the lack of “gold-standard” molecular probes that could 

characterize comprehensively the subtypes of ABCC9-derived transcripts and polypeptides 

that are expressed. From the perspective of lab bench researchers that have assessed the 

results of multiple SUR2 antibodies, we can attest to the imperfect apparent specificity of 

some of these probes in our hands (see Ref. (Nelson, et al., 2014)). Prior studies of SUR2 

gene expression focused on non-human mammals. Zhou et al (Zhou, et al., 2012) studied 

SUR2 distribution (mRNA and protein) in rat brain and found widespread expression; 

neurons predominantly expressed SUR2A whereas SUR2B was more expressed in glial 

cells. Interestingly, arteries from different anatomical areas of pig brains also were reported 

to show distinctive profiles of SUR2A and SUR2B expression (Jansen-Olesen, et al., 

2005,Ploug, et al., 2006,Ploug, et al., 2008). Probes that were not isoform-specific 

demonstrated SUR2 protein in rat dorsal root ganglia neurons (Zoga, et al., 2010), and, a 
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study of hippocampal neurons using single-cell PCR showed that SUR2 expression was 

more common among hippocampal interneurons than pyramidal-type excitatory neurons 

(Zawar, et al., 1999). Experiments in cultured primary rat neurons also found substantial 

SUR2 expression (Ma, et al., 2009). A different study of rats showed that neuronal SUR2 

expression (both mRNA and protein level) increased following neurotoxin lesions in the 

prefrontal cortex (S. Wang, et al., 2005).

Looking beyond anatomical and cellular distribution patterns, assessment of the functional 

roles of ABCC9/SUR2 in the mammalian brain is also confounded by the imperfect 

specificity of many of the experimental approaches. For example, most of the drugs that 

impact SUR2, including glibenclamide, also affect SUR1. Many prior studies– in the 

substantia nigra, in the hypothalamus, and elsewhere have focused on SUR1. Single cell RT-

PCR indicates that the KATP channels in those cells are probably comprised primarily of 

SUR1 and Kir6.2 (Hicks, et al., 1994,Lee, et al., 2011,Liss, et al., 1999,Wu, et al., 1996), but 

over-reliance on the sulfonylurea marker [3H-Glibenclamide] may detect SUR2 as well as 

SUR1, and genetic manipulations in rodents have focused on the Kir6.x genes, which do not 

distinguish between Sur1 or Sur2 partner proteins.

Although there is evidence to indicate ABCC9/SUR2-related mechanisms are important for 

neuron (Ma, et al., 2008,Ma, et al., 2009,Tanner, et al., 2011,Xie, et al., 2010,Zawar, et al., 

1999), astrocyte (Wang, et al., 2014,Zhou, et al., 2012,Zhu, et al., 2008), and 

oligodendrocyte (Fogal, et al., 2010) function, there are presently more bases for a 

discussion of the published literature regarding the impact of ABCC9/SUR2 on brain 

vasoregulation. SUR2 may contribute in multiple ways to the complicated task of regulating 

CNS blood flow and neuroinflammation. In particular, KATP channels have been shown to 

play important roles in vascular smooth muscle cells (Ko, et al., 2008,Nichols, et al., 

2013,Shi, et al., 2012,Standen and Quayle, 1998,Sun and Hu, 2010) including primary 

effects of vasoactive diffusible factors (nitric oxide and hydrogen sulfide) (Liang, et al., 

2011,Shi, et al., 2012,Wang, et al., 2014). SUR2-containing KATP channels are biochemical 

substrates partly responsible for vasodilation following oxygen and/or glucose deprivation 

(Adebiyi, et al., 2011). There have been relatively few study of brain arterioles in 

association with genetic or pharmacologic manipulations of SUR2 per se. However, smooth 

muscle cells are not the only cell type of the neurovascular unit that express ABCC9; for 

example, SUR2B was identified as upregulated in rat capillaries of stroke-prone 

spontaneously hypertensive rats and hypothesized to contribute to their endothelial 

dysfunction (Kirsch, et al., 2001). Further, in mouse embryo brains, ABCC9 is robustly 

expressed in the pericytes (Bondjers, et al., 2006). Finally, there are multiple lines of 

evidence that KATP channels help regulate inflammatory signaling in microglia. SUR2B 

may modulate the microglial release of pro-inflammatory factors including TNF-alpha and 

reactive oxygen species (Sun and Hu, 2010). Microglia appear to activate a microglial-

>neuronal precursor mechanism that includes KATP channel activation (Ortega, et al., 

2012,F. Zhou, et al., 2008). However, many of the above studies are confounded by both 

technical and theoretical complexities that render an “overview” challenging.

A perspective on prior discoveries related to ABCC9/SUR2 in the brain, along with insights 

into therapeutic potential, may be conveyed through a cross-section of the reports that 
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focused on a particular drug candidate molecule, iptakalim (systematic name: 2, 3–dimethyl-

N-[1-methylethyl]-2-butanamine). Iptakalim is an “atypical KATP channel opener” agent 

that is administered orally and penetrates the blood-brain barrier, with pharmacologic 

activation of KATP channels that varies by SUR protein types: SUR2B>SUR2A>>SUR1 

(Costa, 2009,Gao, et al., 2005,Sikka, et al., 2012). Iptakalim has been shown to exert effects 

that hint at the potential for clinical benefits. The drug is neuroprotective in experimental 

models of stroke and Parkinson’s disease (Hu, et al., 2005,H. Wang, et al., 2005a,H. Wang, 

et al., 2005b,Wang, et al., 2004,S. Wang, et al., 2005,Wang, et al., 2006,Yang, et al., 

2004,Yang, et al., 2005,Yang, et al., 2009,Zhang, et al., 2011,Zhou, et al., 2007). Other 

experimental results reported for iptakalim in mammals include beneficial neurochemical 

effects that may help to combat depression or psychoses (Lu, et al., 2014,Volf, et al., 2012). 

Preliminary clinical trials have indicated lack of adverse side effects in human research 

volunteers (Cai, et al., 2012,Duan, et al., 2011). Much remains to be learned about the 

potential therapeutic and/or side effects of iptakalim.

ABCC9 gene variants in human diseases: overview

For iptakalim or any drug, exhaustive biologic characterization is not a necessary 

prerequisite to developing a therapeutic strategy. There are many examples of drugs whose 

safety and efficacy were determined prior to full insights into drug mechanism(s). This may 

be kept in mind as we shift topics, from the incompletely understood ABCC9 mechanisms of 

action, and toward a description of human diseases that are linked to the gene.

Multiple ABCC9 allelic variants are associated with human diseases. A genetic disease 

condition called hypertrichotic osteochondrodysplasia, or Cantu syndrome (Harakalova, et 

al., 2012,van Bon, et al., 2012), is caused by heterozygous ABCC9 mutations that so far are 

clustered in the exons encoding the core of SUR2 (Czeschik, et al., 2013,Harakalova, et al., 

2012,van Bon, et al., 2012) and therefore will be expressed in SUR2A and SUR2B (Grange, 

et al., 2014,Nichols, et al., 2013). Cantu syndrome is rare with <100 cases reported to date 

(Scurr, et al., 2011) (see below). The clinical features include disorders of bones, heart, and 

hair follicles (hirsuitism) with macrocephaly often observed (Cantu, et al., 1982,Nevin, et 

al., 1996). Whereas the reasons for the manifestations are not known, the mechanism for 

Cantu syndrome is gene gain-of-function, reducing the sensitivity of channel activation to 

the ADP/ATP ratio (Nichols, et al., 2013). While ABCC8 or KCNJ8 gene deletion in mice 

results in a Prinzmetal angina-like phenotype with elevated blood pressures (Chutkow, et al., 

2002,Li, et al., 2013,Miki, et al., 2002), no specific human monogenic syndrome has yet 

been definitively linked to loss-of-function mutations in ABCC9.

Of direct relevance to the current review, prior published reports all lack neuropathologic 

workup, but underscore that this disease often includes neurological complications, with a 

cerebrovascular component documented in some cases (Table 1). Different reports have 

noted the presence of “mild” mental retardation, autism, intellectual disability, and/ or 

neuroimaging-based brain abnormalities – at least one of these conditions was noticed in 

28/47 (60%) of Cantu syndrome cases described to date (Table 1). The neurologic 

developmental delay that can be seen in Cantu syndrome may be partly secondary to skeletal 

muscle manifestations, i.e. hypotonia (Grange, et al., 2014) or may be related to alterations 
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in brain blood flow. Importantly, two mutations in KCNJ8/Kir6.1 which also result in gain-

of-function in expressed KATP channels, are associated with Cantu syndrome, along with 

neurological phenotype with tortuous cerebral blood vessels (Brownstein, et al., 

2013,Cooper, et al., 2014).

Whereas Cantu syncrome is a congenital defect that may have pleitropic manifestations, a 

number of exonic ABCC9 variants have been associated with cardiovascular diseases 

including atrial fibrillation, vasospasm, dilated cardiomyopathy, and myocardial infarction 

(Barajas-Martinez, et al., 2012,Beziau, et al., 2014,Bienengraeber, et al., 2004,Kane, et al., 

2005,Nichols, et al., 2013,Olson, et al., 2007,Smith, et al., 2013); Table 2. Variants in 

ABCC9 have also been reported in association with Brugada (cardiovascular) syndrome and 

early repolarization syndrome (Barajas-Martinez, et al., 2012,Hu, et al., 2014). In prior 

studies, as with Cantu syndrome cases, there has not been systematic neuropathological nor 

neuroimaging-based assessment of blood vessels to date in the brains of patients with 

disease-associated exonic ABCC9 polymorphisms.

In contrast to the results of ABCC9 exonic mutations, intronic single nucleotide 

polymorphisms (SNPs) have been linked to diverse non-cardiac clinical phenotypes (Table 

2). Some genetic associations were reported that are intriguing but did not identify a single 

particular SNP that met criteria for a statistically significant association with a specific 

disease. For example, ABCC9 SNPs were associated with Hirschprung disease (most 

significant SNP was rs704192) in a genomewide association study (GWAS) of 123 persons 

with “sporadic” Hirschprung disease, and 432 unaffected controls (Kim, et al., 2014). In a 

separate GWAS with 281 elderly individuals, a SNP (rs10743430) was associated with 

entorhinal cortical thinning on magnetic resonance imaging (MRI) (Furney, et al., 2011). 

Further, 2 reports linked ABCC9 polymorphism with hypertension. Sato et al (Sato, et al., 

2006) identified a combination of SNPs that correlate with essential hypertension in a cohort 

of 405 individuals, and Kamide et al (Kamide, et al., 2013) found in a cohort of 265 persons 

that an ABCC9 SNP is associated with responses to anti-hypertension drugs.

In terms of genomic studies that reported statistically significant associations between 

ABCC9 SNPs and human illnesses, these conditions have tended to be brain disorders: sleep 

problems, depression, and HS-Aging. These SNPs are best considered “risk factors” because 

the allelic variant shows far lower genetic penetrance than the exonic mutations. The sleep 

and depression studies come from two separate research groups and the results incompletely 

overlap. Allebrandt et al (Allebrandt, et al., 2013) found that there is an ABCC9 SNP 

(rs11046205) associated with sleep duration. A follow-up study by Parsons et al (Parsons, et 

al., 2013) failed to replicate the primary SNP association but identified a rare polymorphism 

nearby (rs11046209) that was associated with altered sleep duration and found that 

rs11046205 status was associated in that sample with depressive symptoms (Parsons, et al., 

2013).

ABCC9 in hippocampal sclerosis of aging (HS-Aging)

The association between ABCC9 genetic polymorphism and HS-Aging suggest a 

pathogenetic mechanism with substantial impact on public health. HS-Aging is prevalent 
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among aged individuals, affecting up to 25% of the “oldest-old” (Kuslansky, et al., 

2004,Leverenz and Lipton, 2008,Murray, et al., 2014,Zarow, et al., 2008,Zarow, et al., 

2012). HS-Aging mimics AD clinically (Brenowitz, et al., 2014,Nag, et al., 2015,Pao, et al., 

2011), and the association between HS-Aging pathology and antemortem cognitive 

impairment is strong, factoring in all other known pathologies (Nag, et al., 2015,Nelson, et 

al., 2010). Importantly, HS-Aging tends to occur in individuals older than 85 years of age at 

death (Dickson, et al., 1994,Murray, et al., 2014,Nelson, et al., 2011,Nelson, et al., 2013).

The neuropathology of HS-Aging is characterized by cell loss and astrocytosis in the 

hippocampal formation of aged persons that is out of proportion to the Alzheimer’s-type 

plaques and tangles (Montine, et al., 2012). Focusing on the pathology-based 

endophenotype, we performed a GWAS and replication experiment that incorporated 363 

HS-Aging cases and 2303 controls, from 5 separate large autopsy cohorts, with every case 

pathologically evaluated (Nelson, et al., 2014). This study yielded only a single statistically 

significant risk locus for HS-Aging, an ABCC9 SNP pair (rs704178 and rs704180) that are 

co-inherited. Subsequently, we performed an additional replication assessment of a separate 

group of individuals with 51 HS-Aging cases and 561 controls (again, all cases were 

pathologically verified) that replicated the association between rs704180 risk genotype and 

HS-Aging pathology (Nelson, et al., 2015). Interestingly, there appears to be genetic 

“hotspot” with common SNPs associated with HS-Aging pathology and other disease 

phenotypes. For example, the SNP associated with Hirschprung disease (Kim, et al., 2014) 

-- rs704192 -- is in relatively close linkage disequilibrium to rs704180 (r2=0.55, D’ statistic 

~0.91). The SNP associated with both sleep duration and depression (Allebrandt, et al., 

2013,Parsons, et al., 2013) -- rs11046205 -- is in the same intron as rs704178, <2000 bases 

away. We also note that the SNP (rs10743430) that showed association (Furney, et al., 

2011) with entorhinal cortical thinning (P~1e-7 but not genomewide significant) is not 

within the ABCC9 gene itself, but upstream and intergenic. However, evaluation of public 

access databases indicate that rs10743430 may be an expression quantitative trait locus for 

ABCC9 (data not shown).

Prospects for development of therapeutic strategies may be enhanced by better 

understanding disease mechanisms. A key challenge is determining which disease paradigm 

best fits for HS-Aging: is it a neurodegenerative disease, or a cerebrovascular disease? 

Cerebrovascular diseases are characterized by disrupted blood supply, with relatively 

unpredictable clinical and anatomic disease progression. By contrast, neurodegenerative 

diseases usually follow a progressive clinical course, with pathognomonic “inclusion 

bodies” within specific brain areas.

Although the pathogenesis of HS-Aging is incompletely understood, some published 

findings suggest vascular factors cause or exacerbate the disease. Dickson et al (Dickson, et 

al., 1994), in a seminal study of 13 aged individuals with hippocampal sclerosis, observed 

severe “arteriosclerosis” in 12 of the 13 cases, after which others (Reed, et al., 2007,White, 

et al., 2002,Zarow, et al., 2008) also hypothesized a link between hippocampal sclerosis and 

cardiovascular risk factors. Subsequent studies have provided a more specific focus. We 

performed a systematic analysis of multiple large autopsy series and found that among 

vascular pathologies in the brain, only arteriolosclerosis – dysmorphic changes in small 
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arterioles (Fig. 8) – is associated with HS-Aging pathology (Neltner, et al., 2014). In HS-

Aging cases, arteriolosclerosis was observed in regions outside of the hippocampal 

formation, indicating a “whole-brain disease” rather than a disease process isolated to the 

medial temporal lobe. Intriguingly, Montagne and colleagues recently showed that subtle 

blood-brain barrier dysfunction and “leaky vessels” in the human hippocampus precede 

cognitive impairment in advanced aging (Montagne, et al., 2015). Winkler et al (Sagare, et 

al., 2013) reported that pericyte damage could contribute to cognitive impairment through 

disruption of the neurovascular unit, which may relate to HS-Aging rather than AD. ABCC9 

has also been shown to be expressed in pericytes and its impairment associated with leaky 

vessels (Bondjers, et al., 2006), and KATP channels have been shown to be sensitive to 

cerebral ischemia (Armstead, 1997,Lindauer, et al., 2003,Sun and Hu, 2010).

Alongside the findings linking HS-Aging to cerebrovascular disease, brains of patients with 

HS-Aging pathology have pathologic features that are indicative of a neurodegenerative 

condition. A key pathologic biomarker for HS-Aging is aberrant TDP-43 inclusion bodies 

that may resemble the staining pattern of hippocampal TDP-43 pathology observed in 

frontotemporal lobar degeneration (FTLD), a neurodegenerative disease (Amador-Ortiz, et 

al., 2007a,Amador-Ortiz, et al., 2007b,Aoki, et al., 2015,Neumann, et al., 2006). Further, 

some gene variants (in or near GRN and TMEM106B genes) that are associated with 

increased risk for HS-Aging (Dickson, et al., 2010,Murray, et al., 2014,Nelson, et al., 

2015,Pao, et al., 2011,Rademakers, et al., 2008) were previously associated with increased 

risk for FTLD (Deming and Cruchaga, 2014,Van Deerlin, et al., 2007). The clinical course 

of HS-Aging also tends to follow the trajectory of a neurodegenerative disease (Nelson, et 

al., 2011).

So how could HS-Aging be related to both cerebrovascular disease and neurodegenerative 

disease? The ABCC9 genetic association may be a critical clue to help solve the riddle. 

Although there are valid reasons to contradistinguish neurodegenerative and cerebrovascular 

disorders, there is increasing evidence in support of a more nuanced paradigm with “mixed” 

pathogenetic mechanisms in the aged human brain (Montine, et al., 2014,Snyder, et al., 

2014,Weller, et al., 2015). TDP-43 pathology is not specific for neurodegenerative diseases, 

having been reported in a wide variety of brain disorders including Alexander’s disease, 

Down syndrome, low-grade glial neoplasms, and chronic brain trauma (Davidson, et al., 

2011,Lee, et al., 2008,Ling, et al., 2013,McKee, et al., 2010,Walker, et al., 2014), so there is 

overlap between pathologic findings that are seen in “reactive” and “neurodegenerative” 

conditions. Note that in each of the above conditions there is a brain injury or disease that 

occurs over a long time period, as opposed to an acute condition. It is quite possible that a 

subtype of chronic vascular insult(s) could induce TDP-43 phosphorylation and misfolding, 

although acute anoxic or hypoxic changes lack TDP-43 pathology (Amador-Ortiz, et al., 

2007b,Lee, et al., 2008,Nelson, et al., 2011,Zarow, et al., 2008). Conversely, many vascular 

abnormalities have been described in AD brains (Brown and Thore, 2011,Farkas and Luiten, 

2001,Hamel, 2014,Hunter, et al., 2012,Kalaria, et al., 2012). The established functions of 

human ABCC9/SUR2 include both regulating arteriolar smooth muscle tone and 

participating in pathways that have been implicated in neurodegenerative diseases, e.g., 

hypoxia/ischemia, neuroinflammation, and injury responses. There are also published 
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studies that support direct connections between ABCC9/SUR2 and neurodegenerative 

diseases, including both HS-Aging and AD. For example, in a study of Abcc9 knockout 

mice, the biological pathway most affected (versus wildtype) was “Alzheimer’s disease” 

(Gao, et al., 2014). Moreover, treatment of mice that model Alzheimer’s-type pathology 

with SUR2 activators causes attenuation of pathology (Goodman and Mattson, 

1996,Heurteaux, et al., 1993,Kong and Ba, 2012,Liu, et al., 2002,Liu, et al., 2010,Liu, et al., 

2003). There is as yet unclear understandings of the cross-talk between the normal and 

disease pathways. A very recent paper found direct evidence for KATP channels regulating 

brain Aβ peptide release, and concluded that “the identification of these channels as a link 

between hyperglycemia and AD pathology creates an avenue for translational research in 

AD.” (Macauley, et al., 2015)

Data from multiple sources are thus compatible with the novel hypothesis that long-term 

ABCC9 dysregulation due to a genetic variant may manifest, in the “oldest-old”, in a 

pathologic phenotype that combines features of a cerebrovascular disease (arteriolosclerosis) 

and a neurodegenerative disease (hippocampal TDP-43 pathology and cell loss). The KATP 

channels may also be directly relevant to AD pathology. The details of a stereotypical 

timeline or causal hierarchy of mechanisms are as yet beyond our grasp but Fig. 8 conveys 

one plausible hypothesis, and a credible molecular pathway for disease modification.

Going forward: prospects for neurotherapeutic strategies

ABCC9/SUR2 is an attractive candidate for therapeutic strategies because it is well-

established as a “druggable target”. Pharmacological agents that modify SUR function are 

well known and prescribed widely around the world. Both agonists (nicorandil, diazoxide, 

iptakalim) and antagonists (sulfonylurea drugs) have been applied in clinical trials. In 

addition to treatment of monogenic diseases such as Cantu syndrome, such drugs may be 

repurposed for other human pathologies including cardiovascular diseases, as well as sleep 

disorders and depression. Currently we have no perfect animal model for HS-Aging to study 

with these well-characterized drugs. This is an area of active research in our laboratory. An 

important point about characterized drugs that affect SUR2 function is that each has 

different specificity for SUR2A, SUR2B, and SUR1, and each could exert different impact 

on the brain due to blood-brain barrier penetration and other factors (for example, the 

sulfonylurea drugs tend to be water-insoluble (Davis, et al., 1982,Miralles, et al., 1982)). 

The overall impact on an organism and/or disease progression is therefore stochastic and 

more work may be required to engineer drugs tailored to specific targets, and applicable to 

particular brain functions or diseases.

In summary, the ABCC9 gene, and its polypeptide SUR2 product, occupies an intriguing 

biological niche relevant to stress response and vasoregulation in the brain. The direct 

implications for human diseases are most sharply defined for Cantu syndrome, characterized 

by subtle but intriguing neurological manifestations. Potentially more important in terms of 

human disease prevalence are the associations between ABCC9 and sleep disorders, 

depression, and HS-Aging. For now, more understanding of the biology of ABCC9/SUR2 

and KATP channels in the human brain is required. Better resources for manipulation and 
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assay of KATP channel subcomponents are also needed, in order to realize the potential for 

positive impact on public health through greater focus on this pathogenetic gene.
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Highlights

• ABCC9 encodes SUR2, a metabolic sensor protein that has been shown to 

change (expression and function) in aging

• ABCC9 is also strongly implicated in vasoregulation

• ABCC9 has been implicated in neurologic diseases including sleep, depression, 

and hippocampal sclerosis of aging (HS-Aging)

• HS-Aging is a prevalent and impactful brain disease of advanced old age

• ABCC9/SUR2 is a potentially druggable target that may provide a future 

therapeutic strategy
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Figure 1. Schematic representation of the genes and proteins that make up the human KATP 
channel
A. The ABCC9 gene resides on chromosome 12p and encodes the SUR2 protein. 

Approximately 20 kilobases 3’ from ABCC9 is the KCNJ8 gene that encodes for the Kir6.1 

protein. Paralogous genes on chromosome 11p are ABCC8, which encodes for SUR1 

protein, and KCNJ11 which encodes for Kir6.2 protein. B. Studies on crystal structure have 

elucidated how the KATP channel is organized in the plasma membrane. The KATP channel 

constitutes a hetero-octamer that includes combinations of 4 SUR1/SUR2 proteins, and 4 

Kir6.1/Kir6.2 proteins, with the Kir6.x proteins forming the channel pore. C. When the 

KATP channel is functionally working in the plasma membrane, it allows K+ ions out and is 

responsive to ATP/ADP ratio and pharmacological agonists (e.g., nicorandil and diazoxide) 

and antagonists (sulfonylurea drugs).
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Figure 2. Protein structure of human ABCC9 encoded SUR2 polypeptides
These are relatively large proteins (~150kDa) with multiple membrane-spanning domains. 

Like all ABCC gene-encoded proteins, SUR2 has two transmembrane (“TMD”) domains, 

along with two nucleotide-binding (“NBD”) domains. A characteristic feature of the 

sulfonylurea subcategory of ABCC genes is the presence of a third transmembrane domain, 

TM0. SUR2 has a specialized element in the extreme carboxy end, where two alternatively 

spliced exons lead to two variants (SUR2A and SUR2B) according to that portion. B. A 

variant of SUR2 has been described in mitochondria (~55kDa), shortened as a result of 

alternative splicing as shown.
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Figure 3. Phylogenetic tree provides background on evolution and protein-level identity with 
paralogous proteins
Shown is the result of a phylogenetic tree generated by comparing the protein-level 

sequences of ABCC proteins using the Web-based alignment tool (http://

blast.ncbi.nlm.nih.gov/blast). Also shown for each species/gene in the tree is the protein 

level percent identity for human full-length SUR1/SUR2A/SUR2B proteins. Each of these 

genes is relatively well-conserved in vertebrate species. Further, there are invertebrate 

orthologs (shown are SUR protein data related to fruit flies and mosquitos) that appear more 

homologous to human SUR2 than to SUR1 proteins. For comparison, a presumed ortholog 
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is included in the phylogenetic tree: the human ABCC gene CFTR/ABC7. This is the gene 

responsible for the most common lethal human genetic disease, cystic fibrosis (Riordan, et 

al., 1989).
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Figure 4. Alternative splicing in humans is complex, leading to multiple variants of SUR2 
transcripts and proteins(Shi, et al., 2005)
A. Basic genomic structure of ABCC9 includes at least 39 potential exons, not including 

untranslated regions (UTRs). B. Transcript designated “SUR2B” (ENST00000261200) 

includes Exon 39 but not Exon 38. This transcript incorporates 3’ UTR regions of varying 

lengths which may affect transcript(s) stability. C. Transcript designated “SUR2A” 

(ENST0000026120) includes Exon 38 but not Exon 39 and was recently described to have 

an unique 3’UTR from genomic sequence immediately downstream from Exon 38 (al). D. A 

separate transcript, designated “SUR2Ab” (not yet annotated) incorporates both Exon 38 
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and Exon 39; whereas this transcript is translated similar to “SUR2A”, it harbors the 3’UTR 

that is associated with SUR2B transcript (al). E. Human SUR2A- and SUR2B–like clones 

have been characterized that do not include Exon 17 (NM_005691 and NM_020297) 

(Davis-Taber, et al., 2000). F. Human SUR2A–like clones were characterized that do not 

include Exon 14 (NM_020298). G. Transcripts that produce SUR2-like proteins in 

mitochondrial lack a large portion (from Exons 4–29) but may incorporate either Exon 38 or 

Exon 39 (Ye, et al., 2009). Transcripts that have been annotated, but not functionally 

characterized, which include exons exclusively from either the 5’ portion (H) or the 3’ 

portion (I) of the ABCC9 gene (ENST00000544039,ENST00000538350, and 

ENST00000326684).
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Figure 5. Mechanistic progression associated with SUR2 in a generic cell-type
1. Stressors and/or hypoxia lead to decreased intracellular ATP/ADP ratio. 2. At the plasma 

membrane, the ATP/ADP ratio, as well as other messengers not shown, can shift the KATP 

channel from a closed to open configuration, leading to K+ ions leaving the cell. 3. The K+ 

ions alter (reduce) the membrane depolarization leading to shift in the voltage-gated Ca++ 

pump dynamics. 4. In mitochondria, overlapping signals can affect the local mitochondria 

and mitochondrial SUR2, which is currently imperfectly understood but which also can alter 

mitochondrial Ca++ processing and energy production. 5. A key net outcome of SUR2 

function and KATP channel opening is to decrease local intracellular Ca++ levels which can 

buffer the impact of the stress/hypoxic challenge.
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Figure 6. SUR2 and KATP channels play key roles regulating arteriolar function including 
vasodilation (1–5) and vasoconstriction (6–8)
1. Blood-borne vasodilatory agents (adenosine, nitric oxide, and others) can function 

through either membrane receptors (e.g., adenoside) or by diffusible (nitric oxide) 

mechanisms. 2. Intracellular second messengers including protein kinase A (PKA) can 

phosphorylate SUR2 and promote KATP channel opening. 3. It is not well understood how 

local brain ischemia/hypoxia, or local neuronal excitability, may also promote KATP channel 

opening in vivo. 4. The KATP channel promotes decreased intracellular Ca++, vasodilation, 

and increased local blood flow. 5. By contrast, other signals can promote vasoconstriction, 
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including norepinephrine. 6. One pathway to promote smooth muscle contraction through 

KATP channel mechanism is the PKCe. 7. Other brain-specific pathways including neuronal 

signaling may also lead to KATP channel closing. 8. The net effect of KATP channel closing 

is to increase intracellular Ca++, contract smooth muscle in the tunica media of arterioles, 

and decrease local blood flow. This figure incorporates information from recent reviews 

(Flagg, et al., 2010,Ko, et al., 2008). Here we show cartoon depiction of the KATP channel in 

smooth muscle cells but it should be kept in mind that KATP channels have also been shown 

to affect endothelial cells, pericytes, and possibly perivascular astrocytes.
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Figure 7. KATP channels have been described in just about every cell type of the human brain
The interplay of KATP channels, alongside the many other subtypes of K+ channels, in the 

human brain is extremely complex. These channels play important roles in regulating 

neuronal excitability, stress response, neuroinflammation, and blood flow. Thus these KATP 

channels are candidates for involvement in human brain diseases when they are 

dysfunctional. Increasing evidence is accumulating to highlight the brain conditions where 

KATP channel may be relevant.

Nelson et al. Page 38

Ageing Res Rev. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. A polymorphism in ABCC9 showed genome-wide statistically significant association 
with hippocampal sclerosis of aging (HS-Aging) as a GWAS endophenotype (Haug, et al., 
2015,Nelson, et al., 2014)
HS-Aging is a prevalent neurodegenerative condition affecting the “oldest-old” and 

characterized by cell loss and atrophy in the hippocampal formation not due to Alzheimer’s 

disease-type pathways. Another factor associated with HS-Aging pathology is 

arteriolosclerosis, a pathological change where normal arterioles become dysmorphic (as 

shown in the Figure). Whether and how these observations are connected currently is 

unknown. Given the known expression of ABCC9 in vascular smooth muscle cells, a 
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parsimonious hypothesis is that long-term ABCC9 dysregulation may contribute to brain 

arteriolar injury (arteriolosclerosis) which in turns potentiates the manifestation of HS-

Aging pathology. Scale bars = 1mm for A, B. 100 microns for C, D.
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Table 1

Cantu syndrome cases reported to date, with (n=28) and without (n=19) documented neurological conditions

Paper # Cases Notable human CNS findings (Ref)

Cantu et al, 1982 2 1/2 with mild mental retardation/delay (Cantu, et al., 1982)

Nevin et al, 1996 1 Developmentally normal boy (Nevin, et al., 1996)

D. García-Cruz et al, 1997 4
“Mild mental retardation” in 3/4, “enlarged posterior 
fossa” in 4/4. (Garcia-Cruz, et al., 1997)

Rosser et al, 1998 3 Developmental delay noted in 2/3 cases (Rosser, et al., 1998)

S.P. Robertson et al, 1999 2
Developmental delay/mild mental retardation in both 
cases (Robertson, et al., 1999)

D Concolino et al, 2000 1 “Psychomotor development was normal” (Concolino, et al., 2000)

B Lazalde et al, 2000 4 No specific mention of neurological disorders (Lazalde, et al., 2000)

H. Engels et al, 2002 1
Brain atrophy and ultrasound- confirmed “bilateral 
calcification of the Arteriae thalamostriatae” (Engels, et al., 2002)

D.K. Grange et al, 2006
Woman and two 

daughters No mention of cognitive or cerebral anomaly (Grange, et al., 2006)

C. Graziado et al, 2010 1 “mildly delayed psychomotor development” (Graziadio, et al., 2011)

I. Scurr et al, 2010 9 Motor or speech delay in 9/10 cases (Scurr, et al., 2011)

Kobayashi et al, 2010 1 Clinical syndrome included “developmental delay” (Kobayashi, et al., 2010)

J.C. Czeschik et al, 2012 2
Both with ABCC9 mutations, 1/2 with mild 
developmental delay (Czeschik, et al., 2013)

C.L. Garcia-Gonzalez et al, 
2012 1

Delayed psychomotor development with cerebral cortical 
atrophy on CT scan

(Garcia-Gonzalez, et al., 
2012)

W.M. van Bon Bregjie et 
al, 2012

9 previously 
unpublished, 1 

father/daughter, 1 
sib pair

All with ABCC9 mutations, 3 diagnosed with intellectual 
disability and/or developmental delay, 8/9 with 
macrocephaly (van Bon, et al., 2012)

Y. Hiraki et al, 2013 Father and son
“mild psychomotor delay … and an autistic disorder 
based on the DSM-IV” (Hiraki, et al., 2014)

J.Y. Park et al, 2014 1
ABCC9 mutation (p.Ala1462Gly, c.4385C>G) 
confirmed; atrophic changes of the brain on MRI (Park, et al., 2014)
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Table 2

Clinical conditions and their associations with specific ABCC9 mutations

Clinical condition/
endophenotype

Mutation
Type* Notes (Refs)

Cantu syndrome E, I
Apparent autosomal dominant inheritance of functional 

gain of toxic function; many mutations identified, mostly 
in exons coding transmembrane domains of SUR2 protein

(Harak alova, et al., 2012, 
van Bon, et al., 2012)

Atrial fibrillation E Case of mutation [Thr1547Ile] associated with atrial 
fibrillation originating in the vein of Marshal (Olson, et al., 2007)

Dilated cardiomyopathy E Two cases with distinct mutations [frameshift1524, 
A1513T] associated with dilated cardiomyopathy

(Bienen graeber , et al., 
2004)

Myocardial infarction, early 
repolarization syndrome (ERS), 
and Brugada syndrome (BrS)

E

Coronary arterial vasospam and myocardial infarction 
linked to V734I mutation. Severe cardiac arrhythmias 

associated with 8 ABCC9 mutations from 11 BrS probands 
and 4 ERS probands, the latter with V734I mutations.

(Baraja s-Martine z, et al., 
2012, Beziau, et al., 2014, 

Hu, et al., 2014, Minoretti, et 
al., 2006, Smith, et al., 2013)

Sleep disorder I
ABCC9 SNP rs11046205 and rs11046209 showed some 
association with sleep duration, but with some variation 

between studies

(Allebr andt, et al., 2013), 
(Parsons, et al., 2013)

Depression I ABCC9 SNP rs11046205 was associated with depressive 
symptoms (Parsons, et al., 2013)

Hippocampal sclerosis of aging 
(HS-Aging) I

GWAS with genome-wide statistical significance and 
separate replication study show association between HS-

Aging and a group of intronic SNPs that include rs704180

(Nelson, et al., 2014, 
Nelson, et al., 2015)

Blood pressure/hypertension I ABCC9 SNPs were associated with angiotensin II receptor 
blocker medication response (Kamide, et al., 2013)

Blood pressure/hypertension I A haplotype (ABCC9 SNP combination) is associated with 
risk for essential hypertension (Sato, et al., 2006)

Entorhinal cortex thinning G SNP rs10743430 is ~50,000bases upstream from ABCC9 
In GWAS for MRI-detected atrophy; p~6E-7. (Furney, et al., 2011)

Hirschprung disease I Top SNP (rs704192) is in linkage disequilibrium with HS-
Aging risk SNPs (Kim, et al., 2014)

*
Exonic (E), Intronic (I), Intergenic (G)
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