12,266 research outputs found

    ESTIMATING THE VALUE OF SEQUENTIAL UPDATING SOLUTIONS FOR INTRAYEAR CROP MANAGEMENT

    Get PDF
    Results of comparing updating versus nonupdating modeling assumptions call into question the use of models based on nonupdating strategies as valid representations of actual farmer actions. If farmers are sequential updaters, the results indicate that models assuming no updating are inaccurate. The degree of this inaccuracy ranges between 4% and 10% of profits for the study area. Further, the results indicate that updating appears to be important for both descriptive and prescriptive studies of farmer behavior.Crop Production/Industries,

    Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime

    Get PDF
    We study stability of a circular orbit of a spinning test particle in a Kerr spacetime. We find that some of the circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are still stable in the radial direction. Then for the large spin case ($S < \sim O(1)), the innermost stable circular orbit (ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes the radius of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure

    Spin-squared Hamiltonian of next-to-leading order gravitational interaction

    Full text link
    The static, i.e., linear momentum independent, part of the next-to-leading order (NLO) gravitational spin(1)-spin(1) interaction Hamiltonian within the post-Newtonian (PN) approximation is calculated from a 3-dim. covariant ansatz for the Hamilton constraint. All coefficients in this ansatz can be uniquely fixed for black holes. The resulting Hamiltonian fits into the canonical formalism of Arnowitt, Deser, and Misner (ADM) and is given in their transverse-traceless (ADMTT) gauge. This completes the recent result for the momentum dependent part of the NLO spin(1)-spin(1) ADM Hamiltonian for binary black holes (BBH). Thus, all PN NLO effects up to quadratic order in spin for BBH are now given in Hamiltonian form in the ADMTT gauge. The equations of motion resulting from this Hamiltonian are an important step toward more accurate calculations of templates for gravitational waves.Comment: REVTeX4, 10 pages, v2: minor improvements in the presentation, v3: added omission in Eq. (4) and corrected coefficients in the result, Eq. (9); version to appear in Phys. Rev.

    Tail-induced spin-orbit effect in the gravitational radiation of compact binaries

    Full text link
    Gravitational waves contain tail effects which are due to the back-scattering of linear waves in the curved space-time geometry around the source. In this paper we improve the knowledge and accuracy of the two-body inspiraling post-Newtonian (PN) dynamics and gravitational-wave signal by computing the spin-orbit terms induced by tail effects. Notably, we derive those terms at 3PN order in the gravitational-wave energy flux, and 2.5PN and 3PN orders in the wave polarizations. This is then used to derive the spin-orbit tail effects in the phasing through 3PN order. Our results can be employed to carry out more accurate comparisons with numerical-relativity simulations and to improve the accuracy of analytical templates aimed at describing the whole process of inspiral, merger and ringdown.Comment: Minor corrections. To be published in Physical Review

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Signature of chaos in gravitational waves from a spinning particle

    Get PDF
    A spinning test particle around a Schwarzschild black hole shows a chaotic behavior, if its spin is larger than a critical value. We discuss whether or not some peculiar signature of chaos appears in the gravitational waves emitted from such a system. Calculating the emitted gravitational waves by use of the quadrupole formula, we find that the energy emission rate of gravitational waves for a chaotic orbit is about 10 times larger than that for a circular orbit, but the same enhancement is also obtained by a regular "elliptic" orbit. A chaotic motion is not always enhance the energy emission rate maximally. As for the energy spectra of the gravitational waves, we find some characteristic feature for a chaotic orbit. It may tell us how to find out a chaotic behavior of the system. Such a peculiar behavior, if it will be found, may also provide us some additional informations to determine parameters of a system such as a spin.Comment: 14 pages, LaTeX, to appear in Phys. Rev.

    Higher-order spin effects in the dynamics of compact binaries I. Equations of motion

    Get PDF
    We derive the equations of motion of spinning compact binaries including the spin-orbit (SO) coupling terms one post-Newtonian (PN) order beyond the leading-order effect. For black holes maximally spinning this corresponds to 2.5PN order. Our result for the equations of motion essentially confirms the previous result by Tagoshi, Ohashi and Owen. We also compute the spin-orbit effects up to 2.5PN order in the conserved (Noetherian) integrals of motion, namely the energy, the total angular momentum, the linear momentum and the center-of-mass integral. We obtain the spin precession equations at 1PN order beyond the leading term, as well. Those results will be used in a future paper to derive the time evolution of the binary orbital phase, providing more accurate templates for LIGO-Virgo-LISA type interferometric detectors.Comment: transcription error in Eqs. (2.17) correcte

    Post-Newtonian corrections to the motion of spinning bodies in NRGR

    Full text link
    In this paper we include spin and multipole moment effects in the formalism used to describe the motion of extended objects recently introduced in hep-th/0409156. A suitable description for spinning bodies is developed and spin-orbit, spin-spin and quadrupole-spin Hamiltonians are found at leading order. The existence of tidal, as well as self induced finite size effects is shown, and the contribution to the Hamiltonian is calculated in the latter. It is shown that tidal deformations start formally at O(v^6) and O(v^10) for maximally rotating general and compact objects respectively, whereas self induced effects can show up at leading order. Agreement is found for the cases where the results are known.Comment: 18 pages, 9 figures. Typos corrected, to appear in Physical Review

    A New Measurement of the Average FUV Extinction Curve

    Get PDF
    We have measured the extinction curve in the far-ultraviolet wavelength region of (900 -- 1200 A) using spectra obtained with the Berkeley EUV/FUV spectrometer during the ORFEUS-I and the ORFEUS-II missions in 1993 and 1996. From the complete sample of early-type stars observed during these missions, we have selected pairs of stars with the same spectral type but different reddenings to measure the differential FUV extinction. We model the effects of molecular hydrogen absorption and exclude affected regions of the spectrum to determine the extinction from dust alone. We minimize errors from inaccuracies in the cataloged spectral types of the stars by making our own determinations of spectral types based on their IUE spectra. We find substantial scatter in the curves of individual star pairs and present a detailed examination of the uncertainties and their effects on each extinction curve. We find that, given the potentially large uncertainties inherent in using the pair method at FUV wavelengths, a careful analysis of measurement uncertainties is critical to assessing the true dust extinction. We present a new measurement of the average far-ultraviolet extinction curve to the Lyman limit; our new measurement is consistent with an extrapolation of the standard extinction curve of Savage & Mathis (1979).Comment: 13 pages text, 7 figures 4 tables. Sent as gzipped tar, with ms.tex and 7 figure
    • …
    corecore