130 research outputs found
A synoptic comparison of the MHD and the OPAL equations of state
A detailed comparison is carried out between two popular equations of state
(EOS), the Mihalas-Hummer-Dappen (MHD) and the OPAL equations of state, which
have found widespread use in solar and stellar modeling during the past two
decades. They are parts of two independent efforts to recalculate stellar
opacities; the international Opacity Project (OP) and the Livermore-based OPAL
project. We examine the difference between the two equations of state in a
broad sense, over the whole applicable rho-T range, and for three different
chemical mixtures. Such a global comparison highlights both their differences
and their similarities.
We find that omitting a questionable hard-sphere correction, tau, to the
Coulomb interaction in the MHD formulation, greatly improves the agreement
between the MHD and OPAL EOS. We also find signs of differences that could stem
from quantum effects not yet included in the MHD EOS, and differences in the
ionization zones that are probably caused by differences in the mechanisms for
pressure ionization. Our analysis do not only give a clearer perception of the
limitations of each equation of state for astrophysical applications, but also
serve as guidance for future work on the physical issues behind the
differences. The outcome should be an improvement of both equations of state.Comment: 33 pages, 26 figures. Corrected discussion of Basu & Antia, 2004,
ApJ, 606, L85-L8
Generic model for experimenting and using a family of classifiers systems: description and basic applications.
International audienceClassifiers systems are tools adapted to learn interactions between autonomous agents and their environments. However, there are many kinds of classifiers systems which differ in subtle technical ways. This article presents a generic model (called GEMEAU) that is common to the major kinds of classifiers systems. GEMEAU was developed for different simple applications which are also described
Correlation energy of an electron gas in strong magnetic fields at high densities
The high-density electron gas in a strong magnetic field B and at zero
temperature is investigated. The quantum strong-field limit is considered in
which only the lowest Landau level is occupied. It is shown that the
perturbation series of the ground-state energy can be represented in analogy to
the Gell-Mann Brueckner expression of the ground-state energy of the field-free
electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2)
(B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner
parameter r_s. The perturbation series is given exactly up to o(r_B) for the
case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.
Equation of state of fully ionized electron-ion plasmas
Thermodynamic quantities of Coulomb plasmas consisting of point-like ions
immersed in a compressible, polarizable electron background are calculated for
ion charges Z=1 to 26 and for a wide domain of plasma parameters ranging from
the Debye-Hueckel limit to the crystallization point and from the region of
nondegenerate to fully degenerate nonrelativistic or relativistic electrons.
The calculations are based on the linear-response theory for the electron-ion
interaction, including the local-field corrections in the electronic dielectric
function. The thermodynamic quantities are calculated in the framework of the
N-body hypernetted-chain equations and fitted by analytic expressions. We
present also accurate analytic approximations for the free energy of the ideal
electron gas at arbitrary degeneracy and relativity and for the excess free
energy of the one-component plasma of ions (OCP) derived from Monte Carlo
simulations.
The extension to multi-ionic mixtures is discussed within the framework of
the linear mixing rule. These formulae provide a completely analytic, accurate
description of the thermodynamic quantities of fully ionized electron-ion
Coulomb plasmas, a useful tool for various applications from liquid state
theory to dense stellar matter.Comment: 13 pages, 2 tables, 7 figures, REVTeX using epsf.sty. To be published
in Phys. Rev. E, vol. 58 (1998
Robustness in the long run: Auto-teaching vs Anticipation in Evolutionary Robotics
In Evolutionary Robotics, auto-teaching networks, neural networks that modify their own weights during the life-time of the robot, have been shown to be powerful architectures to develop adaptive controllers. Unfortunately, when run for a longer period of time than that used during evolution, the long-term behavior of such networks can become unpredictable. This paper gives an example of such dangerous behavior, and proposes an alternative solution based on anticipation: as in auto-teaching networks, a secondary network is evolved, but its outputs try to predict the next state of the robot sensors. The weights of the action network are adjusted using some back-propagation procedure based on the errors made by the anticipatory network. First results -- in simulated environments -- show a tremendous increase in robustness of the long-term behavior of the controller
A helium spread among the main sequence stars in NGC 2808
We studied the color distribution of the main sequence of the Globular
Cluster NGC 2808, based on new deep HST-WFPC2 photometry of a field in the
uncrowded outskirts of the cluster. The color distribution of main sequence
stars is wider than expected for a single stellar population, given our
(carefully determined) measurement errors. About 20% of the sample stars are
much bluer than expected and are most plausibly explained as a population
having a much larger helium abundance than the bulk of the main sequence. We
estimate that the helium mass fraction of these stars is Y ~ 0.4. NGC 2808 may
have suffered self-enrichment, with different stellar populations born from the
ejecta of the intermediate mass asymptotic giant branch (AGB) stars of the
first generation. In addition to the Y=0.40 stars, roughly 30% of the stars
should have Y distributed between 0.26-0.29 while 50% have primordial Y, to
explain also the peculiar horizontal branch morphology. Three main stages of
star formation are identified, the first with primordial helium content Y ~
0.24, the second one born from the winds of the most massive AGBs of the first
stellar generation (6-7msun), having Y ~ 0.4, and a third one born from the
matter ejected from less massive AGBs (~ 3.5-4.5msun) with Y ~ 0.26-0.29. For a
long hiatus of time (several 10^7yr) between the second and third generation,
star formation might have been inhibited by the explosion of late Supernovae II
deriving from binary evolution.Comment: accepted for publication on "The Astrophysical Journal
Calibration of White Dwarf cooling sequences: theoretical uncertainty
White Dwarf luminosities are powerful age indicators, whose calibration
should be based on reliable models. We discuss the uncertainty of some chemical
and physical parameters and their influence on the age estimated by means of
white dwarf cooling sequences. Models at the beginning of the white dwarf
sequence have been obtained on the base of progenitor evolutionary tracks
computed starting from the zero age horizontal branch and for a typical halo
chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear
reaction rates, convection, mass loss and initial chemical composition are
discussed. Then, various cooling sequences for a typical white dwarf mass
(M=0.6 Mo) have been calculated under different assumptions on some input
physics, namely: conductive opacity, contribution of the ion-electron
interaction to the free energy and microscopic diffusion. Finally we present
the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much
effort has been spent to extend the equation of state down to the low
temperature and high density regime. An analysis of the latest improvement in
the physics of white dwarf interiors is presented. We conclude that at the
faint end of the cooling sequence (log L/Lo=-5.5) the present overall
uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr.
We suggest that this uncertainty could be substantially reduced by improving
our knowledge of the conductive opacity (especially in the partially degenerate
regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap
Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy
Aims To prospectively investigate the diagnostic accuracy of dual-source computed tomography coronary angiography (CTCA) to diagnose coronary stenoses in relation to body mass index (BMI), Agatston score (AS), and heart rate (HR) as compared with catheter coronary angiography (CCA). Methods and results Hundred and fifty consecutive patients (47 female, mean age 62.9 ± 12.1 years) underwent dual-source CTCA without HR control. Patients were divided into subgroups depending on the median of their BMI (26.0 kg/m2), AS (194), and HR (66 b.p.m.). CCA was considered the standard of reference. Mean BMI was 26.5 ± 4.2 kg/m2 (range 18.3-39.1 kg/m2), mean AS was 309 ± 408 (range 0-4387), and HR was 68.5 ± 12.6 b.p.m. (range 35-102 b.p.m.). Diagnostic image quality was found in 98.1% of all segments (2020/2059). Considering not-evaluative segments at CTCA as false-positive, overall per-patient sensitivity, specificity, positive, and negative predictive value were 96.6%, 86.8%, 82.6%, and 97.5%, respectively. High HR did not deteriorate diagnostic accuracy of CTCA. High BMI and AS were associated with a decrease in per-patient specificity to 84.1% and 77.8%, respectively, while sensitivity and negative predictive value remained high. Conclusion Dual-source CTCA provides high diagnostic accuracy irrespective of the HR and serves as a modality to rule-out coronary artery stenoses even in patients with high BMI and A
PET/MR outperforms PET/CT in suspected occult tumors
BACKGROUND To compare the diagnostic accuracy of PET/MR and PET/CT in patients with suspected occult primary tumors. METHODS This prospective study was approved by the institutional review board. Sequential PET/CT-MR was performed in 43 patients (22 male subjects; median age, 58 years; range, 20-86 years) referred for suspected occult primary tumors. Patients were assessed with PET/CT and PET/MR for the presence of a primary tumor, lymph node metastases, and distant metastases. Wilcoxon signed-rank test was performed to compare the diagnostic accuracy of PET/CT and PET/MR. RESULT According to the standard of reference, a primary lesion was found in 14 patients. In 16 patients, the primary lesion remained occult. In the remaining 13 patients, lesions proved to be benign. PET/MR was superior to PET/CT for primary tumor detection (sensitivity/specificity, 0.85/0.97 vs 0.69/0.73; P = 0.020) and comparable to PET/CT for the detection of lymph node metastases (sensitivity/specificity, 0.93/1.00 vs 0.93/0.93; P = 0.157) and distant metastases (sensitivity/specificity, 1.00/0.97 vs 0.82/1.00; P = 0.564). PET/CT tended to misclassify physiologic FDG uptake as malignancy compared with PET/MR (8 patients vs 1 patient). CONCLUSIONS PET/MR outperforms PET/CT in the workup of suspected occult malignancies. PET/MR may replace PET/CT to improve clinical workflow
- …