243 research outputs found

    Nanorheology of viscoelastic shells: Applications to viral capsids

    Full text link
    We study the microrheology of nanoparticle shells [Dinsmore et al. Science 298, 1006 (2002)] and viral capsids [Ivanovska et al. PNAS 101, 7600 (2004)] by computing the mechanical response function and thermal fluctuation spectrum of a viscoelastic spherical shell that is permeable to the surrounding solvent. We determine analytically the damped dynamics of the shear, bend, and compression modes of the shell coupled to the solvent both inside and outside the sphere in the zero Reynolds number limit. We identify fundamental length and time scales in the system, and compute the thermal correlation function of displacements of antipodal points on the sphere and the mechanical response to pinching forces applied at these points. We describe how such a frequency-dependent antipodal correlation and/or response function, which should be measurable in new AFM-based microrheology experiments, can probe the viscoelasticity of these synthetic and biological shells constructed of nanoparticles.Comment: 17 page

    Adjustable Ellipsoid Nanoparticles Assembled from Re-engineered Connectors of the Bacteriophage Phi29 DNA Packaging Motor

    Get PDF
    A 24 x 30 nm ellipsoid nanoparticle containing 84 subunits or 7 dodecamers of the re-engineered core protein of the bacteriophage phi29 DNA packaging motor was constructed. Homogeneous nanoparticles were obtained with simple one-step purification. Electron microscopy and analytical ultracentrifugation were employed to elucidate the structure, shape, size, and mechanism of assembly. The formation of this structure was mediated and stabilized by N-terminal peptide extensions. Reversal of the 84-subunit ellipsoid nanoparticle to its dodecamer subunit was controlled by the cleavage of the extended N-terminal peptide with a protease. The 84 outward-oriented C-termini were conjugated with a streptavidin binding peptide which can be used for the incorporation of markers. This further extends the application of this nanoparticle to pathogen detection and disease diagnosis by signal enhancement

    Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells

    Get PDF
    Peptidoglycans provide bacterial cell walls with mechanical strength. The spatial organization of peptidoglycan has previously been difficult to study. Here, atomic force microscopy, together with cells carrying mutations in cell-wall polysaccharides, has allowed an in-depth study of these molecules

    Fabrication of Massive Sheets of Single Layer Patterned Arrays Using Lipid Directed Reengineered Phi29 Motor Dodecamer

    Get PDF
    The bottom-up assembly of patterned arrays is an exciting and important area in current nanotechnology. Arrays can be engineered to serve as components in chips for a virtually inexhaustible list of applications ranging from disease diagnosis to ultra-high-density data storage. Phi29 motor dodecamer has been reported to form elegant multilayer tetragonal arrays. However, multilayer protein arrays are of limited use for nanotechnological applications which demand nanoreplica or coating technologies. The ability to produce a single layer array of biological structures with high replication fidelity represents a significant advance in the area of nanomimetics. In this paper, we report on the assembly of single layer sheets of reengineered phi29 motor dodecamer. A thin lipid monolayer was used to direct the assembly of massive sheets of single layer patterned arrays of the reengineered motor dodecamer. Uniform, clean and highly ordered arrays were constructed as shown by both transmission electron microscopy and atomic force microscopy imaging

    A multi-center study on the attitudes of Malaysian emergency health care staff towards allowing family presence during resuscitation of adult patients

    Get PDF
    BACKGROUND The practice of allowing family members to witness on-going active resuscitation has been gaining ground in many developed countries since it was first introduced in the early 1990s. In many Asian countries, the acceptability of this practice has not been well studied. AIM We conducted a multi-center questionnaire study to determine the attitudes of health care professionals in Malaysia towards family presence to witness ongoing medical procedures during resuscitation. METHODS Using a bilingual questionnaire (in Malay and English language), we asked our respondents about their attitudes towards allowing family presence (FP) as well as their actual experience of requests from families to be allowed to witness resuscitations. Multiple logistic regression was used to analyze the association between the many variables and a positive attitude towards FP. RESULTS Out of 300 health care professionals who received forms, 270 responded (a 90% response rate). Generally only 15.8% of our respondents agreed to allow relatives to witness resuscitations, although more than twice the number (38.5%) agreed that relatives do have a right to be around during resuscitation. Health care providers are significantly more likely to allow FP if the procedures are perceived as likely to be successful (e.g., intravenous cannulation and blood taking as compared to chest tube insertion). Doctors were more than twice as likely as paramedics to agree to FP (p-value = 0.002). This is probably due to the Malaysian work culture in our health care systems in which paramedics usually adopt a 'follow-the-leader' attitude in their daily practice. CONCLUSION The concept of allowing FP is not well accepted among our Malaysian health care providers

    Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C

    Get PDF
    A novel type of bacterium has been isolated from various geothermally heated locales on the sea floor. The organisms are strictly anaerobic, rod-shaped, fermentative, extremely thermophilic and grow between 55 and 90° C with an optimum of around 80° C. Cells show a unique sheathlike structure and monotrichous flagellation. By 16S rRNA sequencing they clearly belong to the eubacteria, although no close relationship to any known group could be detected. The majority of their lipids appear to be unique in structure among the eubacteria. Isolate MSB8 is described as Thermotoga maritima, representing the new genus Thermotoga

    Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition

    No full text
    The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation. (c) 2005 Published by Elsevier B.
    corecore