11,410 research outputs found

    Combining Ethological Thinking and Epidemiological Knowledge to Enhance the Naturalness of Organic Livestock Systems

    Get PDF
    Organic livestock farming places strong emphasis on conditions that allow animals to exhibit behavioural needs. This involves the provision of a natural environment and, in particular, outdoor conditions and a reliance on natural forages. Such environments also allow animals to be effectively integrated into crop production. However, there are potential disease risks associated with these conditions, with control options being partly limited by restrictions on chemoprophylactic measures. Examples from dairy and poultry production demonstrate how a basic understanding of ethology and a knowledge of disease epidemiology can enhance the welfare of animals whilst satisfying the ecological objectives of organic farming. Existing epidemiological models and published data can be used to examine the potential ensuing health hazards and control possibilities and to suggest alternatives

    A Protocol for Generating Random Elements with their Probabilities

    Full text link
    We give an AM protocol that allows the verifier to sample elements x from a probability distribution P, which is held by the prover. If the prover is honest, the verifier outputs (x, P(x)) with probability close to P(x). In case the prover is dishonest, one may hope for the following guarantee: if the verifier outputs (x, p), then the probability that the verifier outputs x is close to p. Simple examples show that this cannot be achieved. Instead, we show that the following weaker condition holds (in a well defined sense) on average: If (x, p) is output, then p is an upper bound on the probability that x is output. Our protocol yields a new transformation to turn interactive proofs where the verifier uses private random coins into proofs with public coins. The verifier has better running time compared to the well-known Goldwasser-Sipser transformation (STOC, 1986). For constant-round protocols, we only lose an arbitrarily small constant in soundness and completeness, while our public-coin verifier calls the private-coin verifier only once

    Production of superpositions of coherent states in traveling optical fields with inefficient photon detection

    Get PDF
    We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It non-deterministically distills coherent state superpositions (CSSs) with large amplitudes out of CSSs with small amplitudes using inefficient photon detection. The small CSSs required to produce CSSs with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single photon sources and boosts negativity of Wigner functions of quantum states.Comment: 13 pages, 9 figures, to be published in Phys. Rev.

    Non-hematopoietic Control of Peripheral Tissue T Cell Responses: Implications for Solid Tumors

    Get PDF
    In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first site of pathogen-encounter and also the location of effector function, and mounting evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and resolution of local responses. Just as both effector and memory T cells must adapt to their new interstitial environment upon infiltration, tissues are also remodeled in the context of acute inflammation and disease. In this review, we present the biochemical and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we discuss how tissue remodeling in the context of tumor microenvironments impairs T cell accumulation and function contributing to immune escape and tumor progression

    A Lagrangian dynamic subgrid-scale model turbulence

    Get PDF
    A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space

    Understanding visual map formation through vortex dynamics of spin Hamiltonian models

    Full text link
    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spin-like Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.Comment: 4 pages, 15 figure

    Scattering of first and second sound waves by quantum vorticity in superfluid Helium

    Full text link
    We study the scattering of first and second sound waves by quantum vorticity in superfluid Helium using two-fluid hydrodynamics. The vorticity of the superfluid component and the sound interact because of the nonlinear character of these equations. Explicit expressions for the scattered pressure and temperature are worked out in a first Born approximation, and care is exercised in delimiting the range of validity of the assumptions needed for this approximation to hold. An incident second sound wave will partly convert into first sound, and an incident first sound wave will partly convert into second sound. General considerations show that most incident first sound converts into second sound, but not the other way around. These considerations are validated using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic

    Elastic forces that do no work and the dynamics of fast cracks

    Full text link
    Elastic singularities such as crack tips, when in motion through a medium that is itself vibrating, are subject to forces orthogonal to the direction of motion and thus impossible to determine by energy considerations alone. This fact is used to propose a universal scenario, in which three dimensionality is essential, for the dynamic instability of fast cracks in thin brittle materials.Comment: 8 pages Latex, 1 Postscript figur
    corecore